Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Technical Paper

42 Volts - The View from Today

2004-10-18
2004-21-0094
A few years ago, the automobile industry agreed to adopt standards for a new voltage for the production and use of electrical power. The perception was near universal that 14 Volts was at the limits of its capability, and that 42 Volts would be adopted in a rush. The universal perception was wrong. Since then, much of the auto industry has encountered hard financial times. In a totally separate development, parts suppliers introduced innovations at 14 Volts, some of which a few years ago were thought to require 42 Volts. Today, there are 42-Volt cars and trucks for sale, but only at numbers far lower than necessary to begin to achieve economies of scale. But the factor which caused the industry to develop the 42 Volt standard, the growth of electricity use on motor vehicles, continues with no sign of letup. Further, the true technical obstacles to adoption of 42 Volts have been discovered and at least provisionally solved.
Technical Paper

A Bayesian Approach for Aggregating Test Data Across Sub-Populations

2005-04-11
2005-01-1775
In the process of conducting a reliability analysis of a system, quite often the population of interest is not homogenous; consisting of sub-populations which arise as production operations are adjusted, component suppliers are changed, etc. While these sub-populations are each unique in many ways, they also have much in common. It is also common for data to be available from a variety of different test regimes, e.g. environmental testing and fleet maintenance observations. Hierarchical Bayesian methods provide an organized, objective means of estimating the reliability of the individual systems, the sub-population reliability as well as the reliability of the entire population. This paper provides an introduction to a Bayesian approach that can be extended for more complicated situations.
Technical Paper

A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts

1993-03-01
930282
A novel system for the forming of three dimensional sheet metal parts is described that can form a variety of part shapes without the need for fixed tooling, and given only geometry (CAD) information about the desired part. The central elements of this system are a tooling concept based on a programmable discrete die surface and closed-loop shape control. The former give the process the degrees of freedom to change shape rapidly, and the latter is used to insure that the correct shape is formed with a minimum of forming trials. A 540 kN (60 ton) lab press has been constructed with a 0.3 m (12 in) square pair of discrete tools that can be rapidly re-shaped between forming trials. The shape control system uses measured part shapes to determine a shape error and to correct the tooling shape. This correction is based on a unique “Deformation Transfer Function” approach using a spatial frequency decomposition of the surface.
Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

2012-04-16
2012-01-0694
Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Comparison of Methods for Representing and Aggregating Uncertainties Involving Sparsely Sampled Random Variables - More Results

2013-04-08
2013-01-0946
This paper discusses the treatment of uncertainties corresponding to relatively few samples of random-variable quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse samples it is not practical to have a goal of accurately estimating the underlying variability distribution (probability density function, PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a desired percentage of the actual PDF, say 95% included probability, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the random-variable range corresponding to the desired percentage of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem an interesting and difficult one.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Driver Behavior Recognition Method Based on a Driver Model Framework

2000-03-06
2000-01-0349
A method for detecting drivers' intentions is essential to facilitate operating mode transitions between driver and driver assistance systems. We propose a driver behavior recognition method using Hidden Markov Models (HMMs) to characterize and detect driving maneuvers and place it in the framework of a cognitive model of human behavior. HMM-based steering behavior models for emergency and normal lane changes as well as for lane keeping were developed using a moving base driving simulator. Analysis of these models after training and recognition tests showed that driver behavior modeling and recognition of different types of lane changes is possible using HMMs.
Journal Article

A Dual Grid Curved Beam Finite Element Model of Piston Rings for Improved Contact Capabilities

2014-04-01
2014-01-1085
Piston rings are large contributors to friction losses in internal combustion engines. To achieve higher engine efficiency, low friction ring packs that can maintain good sealing performance must be designed. To support this effort, simulation tools have been developed to model the performance of piston rings during engine operation. However, the challenge of predicting oil consumption, blow by, and ring pack friction with sufficient accuracy remains. This is mostly due to the complexity of this system. Ring dynamics, deformation, interaction with liner and piston, gas and lubricant flow must all be studied together to make relevant predictions. In this paper, a new curved beam finite element model of piston rings is proposed. Ring structural deformation and contact with the liner are treated on two separate grids. A comparison with ring models in the literature and analytical solutions shows that it can provide accurate results efficiently.
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

A Graphical Workstation Based Part-Task Flight Simulator for Preliminary Rapid Evaluation of Advanced Displays

1992-10-01
921953
Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.
Technical Paper

A High-Fidelity Study of High-Pressure Diesel Injection

2015-09-01
2015-01-1853
A study of n-dodecane atomization, following the prescribed unseating of the needle tip, is presented for a high-pressure, non-cavitating Bosch Diesel injector (“Spray A”, in the Engine Combustion Network denomination). In the two simulations discussed here, the internal and external multiphase flows are seamlessly calculated across the injection orifice using an interface-capturing approach (for the liquid fuel surface) together with an embedded boundary formulation (for the injector's walls). This setting makes it possible to directly relate the liquid jet spray characteristics (under the assumption of sub-critical flow and with a grid resolution of 3 µm, or 1/30 of the orifice diameter) to the moving internal geometry of the injector. Another novelty is the capability of modeling the compressibility of the liquid and the gas phase while maintaining a sharp interface between the two.
Technical Paper

A Look at the Automotive-Turbine Regenerator System and Proposals to Improve Performance and Reduce Cost

1997-02-24
970237
The adoption of turbine engines for automotive power plants has been hampered by the high cost, high leakage and high wear rate of present designs of ceramic-matrix regenerators. Proposals are made and analyzed here for design directions to achieve substantial improvements in all three areas. These include lower-cost extruded and pressed matrices; and clamping seals coupled with incremental movement of the rotary-regenerator matrix.
Technical Paper

A Measurement Technique for Characterizing Performance Degradation Caused by EMI on Radio Equipment

2007-10-30
2007-01-4203
By using a radio frequency (RF) audio distortion measurement test setup, communication devices can be evaluated for degradation caused by electromagnetic interference (EMI) from active vehicle components. This measurement technique can be used to determine the performance of a radio receiver under a variety of conditions. The test setup consists of making measurements on a baseband audio signal that is sent to the device under test (receiver) via over-the-air RF transmissions. Once a baseline is established, active components on the vehicle can be powered on to determine their contribution to the receiver's degradation. The degradation measured is a result of distortion caused by conducted, radiated, and/or coupled EMI from active components into the receiver's passband.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

A Model For Estimating Oil Vaporization From The Cylinder Liner As A Contributing Mechanism to Engine Oil Consumption

1999-05-03
1999-01-1520
A model has been developed for estimating the oil vaporization rate from the cylinder liner of a reciprocating engine. The model uses input from an external cycle simulator and an external liner oil film thickness model. It allows for the change in oil composition and the change in oil film thickness due to vaporization. It also estimates how the passage of the compression and scraper rings combine with the vaporization to influence the steady-state composition of the oil layer in the upper ring pack. Computer model results are presented for a compression-ignition engine using a range of liner temperatures, several engine speeds, and two different oils. Vaporization is found to be highly dependent on liner temperature and steady-state oil composition. The steady-state oil composition near the top of the cylinder is found to be significantly different than the composition of the oil near the bottom of the cylinder.
Technical Paper

A Model for Flame Initiation and Early Development in SI Engine and its Application to Cycle-to-Cycle Variations

1994-10-01
942049
This paper uses a model which calculates the flame kernel formation and its early development in spark ignition engines to examine the causes of cycle-to-cycle combustion variations. The model takes into account the primary physical factors influencing flame development. The spark-generated flame kernel size and temperature required to initialize the computation are completely determined by the breakdown energy and the heat conduction from burned region to unburned region. In order to verify the model, the computation results are compared with high-speed Schlieren photography flame development data from an operating spark-ignition engine; they match remarkably well with each other at all test conditions. For the application of this model to the study of cycle-to-cycle variation of the early stage of combustion, additional input is required.
Technical Paper

A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines

1993-03-01
931025
A model for calculating the residual gas fraction in spark ignition engines has been formulated. The model accounts explicitly for the contribution due to the back flow of exhaust gas to the cylinder during the valve overlap period. The model has been calibrated with in-cylinder hydrocarbon measurements at different values of intake pressure, engine speed, and valve overlap timings.
X