Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property

2019-04-02
2019-01-0961
Φ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. A fuel is φ-sensitive if its autoignition reactivity varies with the fuel/air equivalence ratio (φ). Thus, multiple-injection strategies can be used to create a φ-distribution that leads to several benefits. First, the φ-distribution causes a sequential autoignition that reduces the maximum heat release rate. This allows higher loads without knock and/or advanced combustion timing for higher efficiencies. Second, combustion phasing can be controlled by adjusting the fuel-injection strategy. Finally, experiments show that intermediate-temperature heat release (ITHR) increases with φ-sensitivity, increasing the allowable combustion retard and improving stability. A detailed mechanism was applied using CHEMKIN to understand the chemistry responsible for φ-sensitivity.
Journal Article

Visualization of Ignition Processes in High-Pressure Sprays with Multiple Injections of n-Dodecane

2015-04-14
2015-01-0799
We investigate the mixing, penetration, and ignition characteristics of high-pressure n-dodecane sprays having a split injection schedule (0.5/0.5 dwell/0.5 ms) in a pre-burn combustion vessel at ambient temperatures of 750 K, 800 K and 900 K. High-speed imaging techniques provide a time-resolved measure of vapor penetration and the timing and progression of the first- and second-stage ignition events. Simultaneous single-shot planar laser-induced fluorescence (PLIF) imaging identifies the timing and location where formaldehyde (CH2O) is produced from first-stage ignition and consumed following second-stage ignition. At the 900-K condition, the second injection penetrates into high-temperature combustion products remaining in the near-nozzle region from the first injection. Consequently, the ignition delay for the second injection is shorter than that of the first injection (by a factor of two) and the second injection ignites at a more upstream location near the liquid length.
Journal Article

Visualization of Diesel Spray Penetration, Cool-Flame, Ignition, High-Temperature Combustion, and Soot Formation Using High-Speed Imaging

2009-04-20
2009-01-0658
Shadowgraph/schlieren imaging techniques have often been used for flow visualization of reacting and non-reacting systems. In this paper we show that high-speed shadowgraph visualization in a high-pressure chamber can also be used to identify cool-flame and high-temperature combustion regions of diesel sprays, thereby providing insight into the time sequence of diesel ignition and combustion. When coupled to simultaneous high-speed Mie-scatter imaging, chemiluminescence imaging, pressure measurement, and spatially-integrated jet luminosity measurements by photodiode, the shadowgraph visualization provides further information about spray penetration after vaporization, spatial location of ignition and high-temperature combustion, and inactive combustion regions where problematic unburned hydrocarbons exist. Examples of the joint application of high-speed diagnostics include transient non-reacting and reacting injections, as well as multiple injections.
Technical Paper

Validation of the Generalized RNG Turbulence Model and Its Application to Flow in a HSDI Diesel Engine

2012-04-16
2012-01-0140
A generalized re-normalization group (RNG) turbulence model based on the local "dimensionality" of the flow field is proposed. In this modeling approach the model coefficients C₁, C₂, and C₃ are all constructed as functions of flow strain rate. In order to further validate the proposed turbulence model, the generalized RNG closure model was applied to model the backward facing step flow (a classic test case for turbulence models). The results indicated that the modeling of C₂ in the generalized RNG closure model is reasonable, and furthermore, the predictions of the generalized RNG model were in better agreement with experimental data than the standard RNG turbulence model. As a second step, the performance of the generalized RNG closure was investigated for a complex engine flow.
Technical Paper

Validation of an LES Multi Mode Combustion Model for Diesel Combustion

2010-04-12
2010-01-0361
Diesel engine combustion is simulated using Large Eddy Simulation (LES) with a multi-mode combustion (MMC) model. The MMC model is based on the combination of chemical kinetics, chemical equilibrium, and quasi-steady flamelet calculations in different local combustion regimes. The local combustion regime is identified by two combustion indices based on the local temperature and the extent of mixture homogeneity. The LES turbulence model uses the dynamic structure model (DSM) for sub-grid stresses. A new spray model in the LES context is used, and the Reynolds-averaged Navier-Stokes (RANS) based wall model is retained with the LES derived scales. These models are incorporated in the KIVA3V-ERC-Release 2 code for engine combustion simulations. A wide range of diesel engine operating conditions were chosen to validate the combustion model.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

Using Dynamic Modular Diesel Engine Models To Understand System Interactions and Performance

1999-03-01
1999-01-0976
This paper reviews the engine modeling program in the Powertrain Control Research Laboratory at the University of Wisconsin-Madison, focuses on simulation results obtained from a complete modular turbocharged diesel engine dynamic model developed in this lab, and suggests ways that dynamic engine system models can be used in the design process. It examines the dynamic responses and interactions between various components in the engine system, looks at how these components affect the overall performance of the system in transient and steady state operation.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Technical Paper

Update on Engine Combustion Research at Sandia National Laboratories

2001-05-14
2001-01-2060
The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work.
Journal Article

Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions

2008-04-14
2008-01-0019
One way to increase the load range in an HCCI engine is to increase boost pressure. In this modeling study, we investigate the effect of increased boost pressure on the fuel chemistry in an HCCI engine. Computed results of HCCI combustion are compared to experimental results in a HCCI engine. We examine the influence of boost pressure using a number of different detailed chemical kinetic models - representing both pure compounds (methylcyclohexane, cyclohexane, iso-octane and n-heptane) and multi-component models (primary reference fuel model and gasoline surrogate fuel model). We examine how the model predictions are altered by increased fueling, as well as reaction rate variation, and the inclusion of residuals in our calculations. In this study, we probe the low temperature chemistry (LTC) region and examine the chemistry responsible for the low-temperature heat release (LTHR) for wide ranges of intake boost pressure.
Journal Article

Understanding Hydrocarbon Emissions to Improve the Performance of Catalyst-Heating Operation in a Medium-Duty Diesel Engine

2023-04-11
2023-01-0262
To cope with regulatory standards, minimizing tailpipe emissions with rapid catalyst light-off during cold-start is critical. This requires catalyst-heating operation with increased exhaust enthalpy, typically by using late post injections for retarded combustion and, therefore, increased exhaust temperature. However, retardability of post injection(s) is constrained by acceptable pollutant emissions such as unburned hydrocarbon (UHC). This study provides further insight into the mechanisms that control the formation of UHC under catalyst-heating operation in a medium-duty diesel engine, and based on the understanding, develops combustion strategies to simultaneously improve exhaust enthalpy and reduce harmful emissions. Experiments were performed with a full boiling-range diesel fuel (cetane number of 45) using an optimized five-injections strategy (2 pilots, 1 main, and 2 posts) as baseline condition.
Technical Paper

Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame

2013-04-08
2013-01-0908
For better understanding of soot formation and oxidation processes applicable to diesel engines, the size, morphology, and nanostructure of soot particles directly sampled in a diesel spray flame generated in a constant-volume combustion chamber have been investigated using Transmission Electron Microscopy (TEM). For this soot diagnostics, the effects of the sampling processes, TEM observation methodology and image processing methods on the uncertainty in the results have not been extensively discussed, mainly due to the complexity of the analysis.
Technical Paper

Ultrasonic Cavitation Based Casting of Aluminum Matrix Nanocomposites for Automobile Structures

2006-04-03
2006-01-0290
The properties of aluminum alloys reinforced by ceramic nanoparticles (less than 100nm) would be enhanced considerably while the ductility is retained over that of the native alloy. The potential of bulk Al-based metal matrix nano-composites (Al MMNCs) cannot be fully developed for industrial applications unless complex structural Al MMNC components can be fabricated cost effectively, such as by casting. Reliable bulk Al MMNCs cannot be cast unless the nanoparticles can be dispersed and distributed uniformly in molten Al alloys. This paper investigates a high volume production method for high performance aluminum matrix nanocomposites, in particular, the application of high intensity ultrasonic cavitation in mixing and dispersing nano-sized ceramic particles in Al melts to cast bulk Al MMNCs for complex automobile structures. Nano-sized SiC particles have been dispersed in molten aluminum alloy A356 for casting.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Technical Paper

Type X and Y Errors and Data & Model Conditioning for Systematic Uncertainty in Model Calibration, Validation, and Extrapolation1

2008-04-14
2008-01-1368
This paper introduces and develops the concept of “Type X” and “Type Y” errors in model validation and calibration, and their implications on extrapolative prediction. Type X error is non-detection of model bias because it is effectively hidden by the uncertainty in the experiments. Possible deleterious effects of Type X error can be avoided by mapping uncertainty into the model until it envelopes the potential model bias, but this likely assigns a larger uncertainty than is needed to account for the actual bias (Type Y error). A philosophy of Best Estimate + Uncertainty modeling and prediction is probably best supported by taking the conservative choice of guarding against Type X error while accepting the downside of incurring Type Y error. An associated methodology involving data- and model- conditioning is presented and tested on a simple but rich test problem.
Journal Article

Two-Wavelength PLIF Diagnostic for Temperature and Composition

2008-04-14
2008-01-1067
Laser excitation wavelengths for two-line planar laser-induced fluorescence (PLIF) of 3-pentanone have been optimized for simultaneous imaging of temperature and composition under engine-relevant conditions. Validation of the diagnostic was performed in a motored optical IC engine seeded homogeneously with 3-pentanone. PLIF measurements of the uniform mixture during the compression stroke were used to measure the average temperature and to access the random uncertainty in the measurements. To determine the accuracy of the temperature measurements, experimental average temperatures were compared to values computed assuming isentropic compression and to the output of a tuned 1-D engine simulation. The comparison indicated that the absolute accuracy of the temperature measurements is better than ±5%. Probability density functions (PDFs) calculated from the single-shot images were used to estimate the precision of the measurements.
Technical Paper

Two-Scale Command Shaping for Reducing NVH during Engine Shutdown

2020-04-14
2020-01-0411
Two-scale command shaping is a recently proposed feedforward control method aimed at mitigating undesirable vibrations in nonlinear systems. The TSCS strategy uses a scale separation to cancel oscillations arising from nonlinear behavior of the system, and command shaping of the remaining linear problem. One promising application of TSCS is in reducing engine restart and shutdown vibrations found in conventional and in hybrid electric vehicle powertrains equipped with start-stop features. The efficacy of the TSCS during internal combustion engine restart has been demonstrated theoretically and experimentally in the authors’ prior works. The present article presents simulation results and describes the verified experimental apparatus used to study TSCS as applied to the ICE shutdown case. The apparatus represents a typical HEV powertrain and consists of a 1.03 L three-cylinder diesel ICE coupled to a permanent magnet alternating current electric machine through a spur gear coupling.
Technical Paper

Two-Photon Laser-Induced Fluorescence of Nitric Oxide in a Diesel Engine

2006-04-03
2006-01-1201
In-cylinder concentrations of nitric oxide (NO) in a diesel engine were studied using a laser-induced fluorescence (LIF) technique that employs two-photon excitation. Two-photon NO LIF images were acquired during the expansion and exhaust portions of the engine cycle providing useful NO fluorescence signal levels from 60° after top dead center through the end of the exhaust stroke. The engine was fueled with the oxygenated compound diethylene glycol diethyl ether to minimize soot within the combustion chamber. Results of the two-photon NO LIF technique from the exhaust portion of the cycle were compared with chemiluminescence NO exhaust-gas measurements over a range of engine loads from 1.4 to 16 bar gross indicated mean effective pressure. The overall trend of the two-photon NO LIF signal showed good qualitative agreement with the NO exhaust-gas measurements.
Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
X