Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Study of Nozzle Fouling: Deposit Build-Up and Removal

2019-12-19
2019-01-2231
The global demand for decreased emission from engines and increased efficiency drives manufactures to develop more advanced fuel injection systems. Today's compression-ignited engines use common rail systems with high injection pressures and fuel injector nozzles with small orifice diameters. These systems are highly sensitive to small changes in orifice diameters since these could lead to deteriorations in spray characteristics, thus reducing engine performance and increasing emissions. Phenomena that could create problems include nozzle fouling caused by metal carboxylates or biofuels. The problems increase with extended use of biofuels. This paper reports on an experimental study of nozzle hole fouling performed on a single-cylinder engine. The aim was to identify if the solubility of the fuel has an effect on deposit build-up and, thus, the reduction in fuelling with associated torque loss, and if there is a probability of regenerating the contaminated injectors.
Technical Paper

Mechanism for Internal Injector Deposits Formation in Heavy-duty Engines using Drop-in Fuels

2023-09-29
2023-32-0053
Heavy-duty transportation is one of the sectors that contributes to greenhouse gas emissions. One way to reduce CO2 emissions is to use drop-in fuels. However, when drop-in fuels are used, i.e., higher blends of alternative fuels are added to conventional fuels, solubility problems and precipitation in the fuel can occur. As a result, insolubles in the fuel can clog the fuel filters and interfere with the proper functioning of the injectors. This adversely affects engine performance and increases fuel consumption. These problems are expected to increase with the development of more advanced fuel systems to meet upcoming environmental regulations. This work investigates the composition of the deposits formed inside the injectors of the heavy-duty diesel engine and discusses their formation mechanism. Injectors with internal deposits were collected from field trucks throughout Europe. Similar content, location and structure were found for all the deposits in the studied injectors.
Technical Paper

Development of a Laboratory Unit to Study Internal Injector Deposits Formation

2023-08-28
2023-24-0078
The formation of deposits in the fuel systems of heavy-duty engines, using drop-in fuels, has been reported in recent years. Drop-in fuels are of interest because they allow higher levels of alternative fuels to be blended with conventional fuels that are compatible with today’s engines. The precipitation of insolubles in the drop-in fuel can lead to clogging of fuel filters and internal injector deposits, resulting in increased fuel consumption and engine drivability problems. The possible mechanisms for the formation of the deposits in the fuel system are not yet fully understood. Several explanations such as operating conditions, fuel quality and contamination have been reported. To investigate injector deposit formation, several screening laboratory test methods have been developed to avoid the use of more costly and complex engine testing.
Journal Article

Characterization of Deposits Collected from Plugged Fuel Filters

2019-09-09
2019-24-0140
Fuel filters serve as a safety belt for modern compression ignition engines. To meet the requirements from environmental regulations these engines use the common rail injection system, which is highly susceptible to contamination from the fuel. Furthermore, the public awareness towards global warming is raising the need for renewable fuels such as biodiesel. An increased fuel variety brings a higher requirement for fuel filters as well. To better understand the process of filtration, awareness of the different possible contaminants from the field is needed. This study used several chemical characterization techniques to examine the deposits from plugged fuel filters collected from the field. The vehicle was run with a biodiesel blend available on the market.
Technical Paper

An Investigation of the Degradation of Biodiesel Blends in a Heavy-Duty Diesel Engine

2022-03-29
2022-01-0512
One way to reduce carbon dioxide emissions from the current heavy-duty vehicles fleet is to replace fossil fuel with renewable fuel. This can be done by blending so-called drop-in fuels into the standard diesel fuel. However, problems such as insoluble impurities may arise when the fuels are mixed. These precipitates, known as soft particles, can cause deposits in the fuel system, e.g., injectors and fuel filters, reducing the engine´s performance. The most used drop-in fuel today is biodiesel which, is blended with different concentrations. To better understand how soft particles are formed in the vehicle´s fuel system, the degradation of biodiesel blends in the engine has been investigated. This study explores biodiesel blends´ degradation process by comparing the incoming fuel with the return fuel from a modern diesel engine to investigate how the fuel is affected by this process. The engine was run using different blends of biodiesel fuel.
X