Refine Your Search

Topic

Search Results

Technical Paper

Stability Monitoring Algorithm with a Combined Slip Tire Model for Maximized Cornering Speed of High-Speed Autonomous Driving

2023-04-11
2023-01-0684
This paper presents a stability monitoring algorithm with a combined slip tire model for maximized cornering speed of high-speed autonomous driving. It is crucial to utilize the maximum tire force with maintaining a grip driving condition in cornering situations. The model-free cruise controller has been designed to track the desired acceleration. The lateral motion has been regulated by the sliding mode controller formulated with the center of percussion. The controllers are suitable for minimizing the behavior errors. However, the high-level algorithm is necessary to check whether the intended motion is inside of the limit boundaries. In extreme diving conditions, the maximum tire force is limited by physical constraints. A combined slip tire model has been applied to monitor vehicle stability. In previous studies, vehicle stability was evaluated only by vehicle acceleration.
Journal Article

Skid Steering Based Maneuvering of Robotic Vehicle with Articulated Suspension

2009-04-20
2009-01-0437
This paper describes a driving control algorithm based on skid steering for a Robotic Vehicle with Articulated Suspension (RVAS). The driving control algorithm consists of four parts; speed controller for tracking of the desired speeds, yaw rate controller which computes a yaw moment input to track desired yaw rates, longitudinal tire force distribution which determines an optimal desired longitudinal tire force and wheel torque controller which determines a wheel torque command at each wheel to keep slip ratio at each wheel below a limit value as well as track the desired tire force. Longitudinal and vertical tire force estimators are designed for optimal tire force distribution and wheel slip control. The dynamic model of RVAS for simulation study is validated using vehicle test data.
Technical Paper

Rear-Wheel Steering Control for Enhanced Maneuverability of Vehicles

2019-04-02
2019-01-1238
This paper proposes a rear-wheel steering control method that can modify and improve the vehicle lateral response without tire model and parameter. The proposed control algorithm is a combination of steady-state and transient control. The steady state control input is designed to modify steady-state yaw rate response of the vehicle, i.e. understeer gradient of the vehicle. The transient control input is a feedback control to improve the transient response when the vehicle lateral behavior builds up. The control algorithm has been investigated via computer simulations. Compared to classical control methods, the proposed algorithm shows good vehicle lateral response such as small overshoot and fast response. Specifically, the proposed algorithm can alleviate stair-shaped response of the lateral acceleration.
Technical Paper

Model Validation of the Chevrolet Volt 2016

2018-04-03
2018-01-0420
Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Technical Paper

Model Predictive Control-Based Lateral Control of Autonomous Large-Size Bus on Road with Large Curvature

2021-04-06
2021-01-0099
This paper describes a lateral control of autonomous large size buses on road with large curvature. In the case of long and wide commercial vehicle such as large bus, applying centerline tracking controllers in constrained environments such as large curved road (e.g. turning at intersection) may cause some concerns. Two concerns are considered: inner lane crossing related to collisions with curb and opposite lane crossing related to threatening surrounding vehicles. Considering relations between width and curvature of the road and length and width of the large size bus, the curvature of road at which inner or outer lane crossing begin to occur was calculated when centerline tracking controller was applied. Thus, the proposed algorithm optimizes motion of the bus by using model predictive control (MPC) using road geometry as constraints.
Technical Paper

High-Definition Map Based Motion Planning, and Control for Urban Autonomous Driving

2021-04-06
2021-01-0098
This paper presents motion planning and control algorithm for urban automated driving using high-definition(HD) map. Many automakers have developed and commercialized advanced driver assistance system(ADAS) based on vision-only lane extraction in motorway environments. Compared to the motorway environments where the lane is continuous and clearly visible, however, in urban roads, degradation of the lane quality such as lane occlusion and lane loss occurs frequently. This leads to the poor quality of the local guide path for the autonomous vehicles with vision-only lane extraction. Global HD map is used to provide the lane information continuously instead of vision-only lane extraction. With the existence of global position of host vehicle and the HD map, the proposed sequential algorithm performs the lane keeping and lane changing decision and control with safety margin in multi-vehicle situation.
Technical Paper

Hierarchical Motion Planning and Control Algorithm of Autonomous Racing Vehicles for Overtaking Maneuvers

2023-04-11
2023-01-0698
This paper describes a hierarchical motion planning and control framework for overtaking maneuvers under racing circumstances. Unlike urban or highway autonomous driving conditions, race track driving requires longer prediction and planning horizons in order to respond to upcoming corners at high speed. In addition, the subject vehicle should determine the optimal action among possible driving modes when opponent vehicles are present. In order to meet these requirements and secure real time performance, a hierarchical architecture for decision making, motion planning, and control for an autonomous racing vehicle is proposed. The supervisor determines whether the subject vehicle should stay behind the preceding vehicle or overtake, and its direction when overtaking. Next, a high level trajectory planner generates the desired path and velocity profile in a receding horizon fashion.
Technical Paper

Estimation of Side Slip Angle Interacting Multiple Bicycle Models Approach for Vehicle Stability Control

2019-04-02
2019-01-0445
This paper presents an Interacting Multiple Model (IMM) based side slip angle estimation method to estimate side slip angle under various road conditions for vehicle stability control. Knowledge of the side slip angle is essential enhancing vehicle handling and stability. For the estimation of the side slip angles in previous researches, prior knowledge of tire parameters and road conditions have been employed, and sometimes additional sensors have been needed. These prior knowledge and additional sensors, however, necessitates many efforts and make an application of the estimation algorithm difficult. In this paper, side slip angle has been estimated using on-board vehicle sensors such as yaw rate and lateral acceleration sensors. The proposed estimation algorithm integrates the estimates from multiple Kalman filters based on the multiple models with different parameter set.
Technical Paper

Development of Module Based IPS Evaluation System

2006-04-03
2006-01-1569
A module based IPS (Intelligent Power Switch) evaluation system is proposed in this paper. As the IPS is gradually replacing the conventional relay and fuses, the stability and reliability of power system depends more on these IPS. The proposed IPS evaluation system outperforms the conventional manual evaluation in terms of speed and efficiency. This paper will introduce the structure of hardware and software of the IPS evaluation system. The system is placed between the module and cable connector to evaluate the module in an operating car without changing the cables. The control and signal processing is carried out by personal computer which is connected to the evaluation system by USB (Universal Serial Bus). The load resistance can be switch from actual load to arbitrary value using relay circuitry and DC electric load controlled by GPIB (General Purpose Interface Bus). CAN (Controller Area Network) circuits were added to control the IPS mounted inside the module.
Technical Paper

Development of Ground Level Simulation Tool for Automotive Applications

2006-04-03
2006-01-0371
This paper describes the ground system model and algorithm for a ground level simulation tool. First, the modeling of an automotive ground system will be discussed and the algorithm for a simulation tool will be explained. We divided the model into a ground tree and a ground body. The ground tree model consists of resistance formed by the wires that connect the load to ground point with various structures and the ground body model consists of resistance between ground points in the car body. The wires with large current, such as engine ground cable, was modeled in detail by dividing the resistance into wire, bolt, and clamping resistance, in order to simulate the effect of increased contact resistance after durability test. The algorithm of the ground level simulation tool was designed to adjust the currents of the alternator, battery, and ground points in order to evaluate the various driving and load conditions.
Technical Paper

Development of Fault Detection and Emergency Control for Application to Autonomous Vehicle

2021-04-06
2021-01-0075
This paper describes a failsafe system of automated driving vehicles. The failsafe system consists of the following two parts: sliding mode observer-based environment sensor, chassis sensor fault detection, and emergency deceleration control. Two sliding mode observers are designed to reconstruct the fault of acceleration and environment sensor(Lidar) in a longitudinal direction. In the environment sensor's fault detection part, the longitudinal vehicle model receives clearance and relative velocity values. Therefore, failure diagnosis is possible regardless of environmental sensors, such as radar, lidar, and camera. This paper's sensor data is the failure of Delphi's Electronically Scanning Radar (ESR) and Ibeo's LUX Lidar installed in an autonomous vehicle. The emergency deceleration control algorithm employs the sliding mode control with adaptive convergence time. In the event of a failure, it is significant to control the vehicle within a short period safely.
Journal Article

Developing Mode Shift Strategies for a Two-Mode Hybrid Powertrain with Fixed Gears

2008-04-14
2008-01-0307
Two-mode hybrid architectures with three planetary gear sets and four clutches will bring both flexibility and complexity to energy management of powertrains. In order to take full advantage of the increased degrees of freedom, highly delicate operation strategies are needed. We develop transmission efficiency models for power-split modes, and present a mode shift strategy assuming no battery power. When battery load leveling is additionally considered, the respective optimal operation set for each mode can be obtained and compared to yield a mode shift algorithm for general hybrid operation situations. The investigation of the strategies shows how frequently each mode is used, and verifies the effectiveness of fixed gear operations. We check the validity of the strategies by applying the algorithm to dynamic optimization and by predicting how it works during an actual driving simulation.
Technical Paper

Data-driven Trajectory Planning of Lane Change Maneuver for Autonomous Driving

2023-04-11
2023-01-0687
This paper presents a methodology of trajectory planning for the surrounding-aware lane change maneuver of autonomous vehicles based on a data-driven method. The lateral motion is planned by sampling candidate patterns which are defined based on quintic polynomial functions over time. Based on the cost evaluation among the sampled candidates, the optimal lateral motion pattern is selected as a reference and tracked by the controller. The longitudinal motion is planned and controlled using Model Predictive Control (MPC) which is an optimal control method designed considering the surrounding traffic information. To realize the lane change motion similar to the human driving behavior in the surrounding traffic situation, the human driving pattern is modeled in the form of motion parameters and considered in planning the lateral and longitudinal motion.
Technical Paper

Closed-Loop Evaluation of Vehicle Stability Control (VSC) Systems using a Combined Vehicle and Human Driving Model

2004-03-08
2004-01-0763
This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) systems using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator which consists of a three-dimensional vehicle dynamic model, interface between human driver and vehicle simulator, three-dimensional animation program and a visual display has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.
Technical Paper

Characteristics of Syngas Combustion Based on Methane at Various Reforming Ratios

2007-08-05
2007-01-3630
Characteristics of syngas combustion at various reforming ratios were studied numerically. The syngas was formed by the partial oxidation of methane to mainly hydrogen and carbon monoxide and cooled to ambient temperature. Stiochiometric and lean premixed flames of the mixtures of methane and the syngas were compared at the atmospheric temperature and pressure conditions. The adiabatic flame temperature decreased with the reforming ratio. The laminar burning velocity, however, increased with the reforming ratio. For stretched flames in a counterflow, the high temperature region was broadened with the reforming ratio. The maximum flame temperature decreased with the reforming ratio for the stoichiometric case, but increased for the lean case except for the region of very low stretch rate. The extinction stretch rate increased with the reforming ratio, implying that the syngas assisted flame is more resistance to turbulence level.
Technical Paper

Application of Functional Design Method to Road Vehicle Aerodynamic Optimization in Initial Design Stage

2009-04-20
2009-01-1166
Exterior shape of automobile can be represented by shape function through this study so that aerodynamic shape parameters can be easily controlled and changed. Also ordinary geometric information can be extracted easily from shape function model by simple calculations. It is possible to predict the aerodynamic performance of functional virtual car models which are transformed continually by developing automated program in initial design stage that includes all of above process. Innovative vehicle design process with exterior design guide will be proposed for stylist, engineer and packaging department in order to achieve low aerodynamic drag and high fuel efficiency targets.
Technical Paper

An Investigation into Unified Chassis Control based on Correlation with Longitudinal/Lateral Tire Force Behavior

2009-04-20
2009-01-0438
This paper presents a Unified Chassis Control (UCC) strategy to improve vehicle stability and maneuverability by integrating Electronic Stability Control (ESC) and Active Front Steering (AFS). The UCC architecture consists of two parts: an estimator and a controller. The estimator is designed to estimate longitudinal and lateral tire forces and the controller is designed in two stages, namely, an upper level controller and a lower level controller. The upper level controller, provides the desired yaw moment for vehicle lateral stability by adopting a sliding control method. The lower level controller, provides the integration method of the AFS and ESC strategies for the desired yaw moment and is designed by optimal tire force coordination.
Journal Article

Aerodynamic Drag Reduction of Ahmed Model Using Synthetic Jet Array

2013-03-25
2013-01-0095
As speed of ground vehicle increases, there are increased concerns on the aerodynamic drag reduction of ground vehicle. Recently, synthetic jet is emerging as a promising active flow control technology for aerodynamic drag reduction. In this paper, we performed an experimental parametric study on synthetic jet for aerodynamic drag reduction of Ahmed model. Synthetic jet array is constructed by twelve synthetic jet actuators, and installed on two kinds of Ahmed models, of which slant angles are 25° and 35°. The jets are emanated between the roof and the rear slant surface. Jet angle, momentum coefficient, and driving frequency are changed to assess the effect of synthetic jet array on aerodynamic drag. To quantify the effect of synthetic jet, the aerodynamic drag and rear surface pressure are measured and analyzed. From the result, the effect of synthetic jet actuation on aerodynamic drag differs according to the slant angle of the body.
Technical Paper

A Study on Vortex Shedding Around a Bluff Body Near the Ground

2003-03-03
2003-01-0652
A series of experiments and computational analysis were carried out on the flow around a bluff body. Some non-streamlined ground vehicles, buildings and pipelines near to the ground could encounter very dangerous situations because of the unsteady wind loading caused by the periodic vortex shedding behind the bluff body. A two-dimensional bluff body model was used to simulate flow in the wake region. Spectral analysis of the velocity profiles in the underbody region was also used to examine the influence of the underbody flow in the wake region. By using a flow visualization technique, the critical gap height and the separation line on the ground were investigated for various gap heights and boundary layer thicknesses. Additionally, the 2-D Incompressible Navier-Stokes equation with an ε - SST (Strain Shear Stress Transport) turbulence model was used for comparison with experimental results.
Technical Paper

A Study of an Active Rear Diffuser Device for Aerodynamic Drag Reduction of Automobiles

2012-04-16
2012-01-0173
The goal of this study is to develop an actively translating rear diffuser device to reduce the aerodynamic drag experienced by passenger cars. The feature of this device is hidden under the rear bumper ordinarily not to ruin the external design of the car and slips out backward under the high-speed driving condition. By this study, a movable arc-shaped semi-diffuser device is designed to maintain the streamlined automobile rear underbody configuration. It's installed under the rear bumper of a passenger car. Seven types of rear diffuser devices whose positions, slid out lengths and widths are differing with the basic shape installed in the rear bumper section of a passenger car and performed Computational Fluid Dynamics (CFD) analyses under rotating wheel and moving ground conditions. The main purpose of this study is that explains the aerodynamic drag reduction mechanism of a passenger car via an actively translating rear diffuser device at a high speed driving condition.
X