Refine Your Search

Topic

Search Results

Technical Paper

Wear of Friction Material during Vehicle Braking

2009-04-20
2009-01-1032
An analysis of the vehicle braking, combining with the linear relation between wear and frictional work already investigated, was used to establish a wear equation. Initial braking velocity, the number of brakings per 1 km and pad thickness loss per 1000 km were determined by using taxis with identical car types and identical pad qualities. Based on the averaged experimental results and some normal braking conditions, the calculated average apparent specific wear rate through the equation was unexpectedly found to decrease firstly and then increase with the increase of average initial braking velocity. The pad friction properties relevant to the equation analysis were tested by using a dynamometer, followed by measuring wear as a function of temperature at three different initial velocities that equal the average initial braking velocities respectively.
Technical Paper

Vibration Analysis of an Electric Vehicle Mounting System under Transient Shock Conditions

2021-04-06
2021-01-0664
Electric vehicle motors have the characteristics of fast torque response, large amplitude, and braking feedback torque. Therefore, the excitation of the electric vehicle powertrain has obvious transient impact characteristics, which put forward new requirements for the design of the mounting system. This article carried out the real vehicle test of rapid acceleration and rapid deceleration. A 12-degree-of-freedom nonlinear dynamic model of the electric vehicle mounting system is established. The model is used to calculate the vibration acceleration of the active side and the passive side of the mount, and compared with the test value to verify the correctness of the simulation model. The impact degree, the maximum pitch angle of the powertrain, and the longitudinal acceleration of the powertrain centroid are used as evaluation indicators to analyze the transient response of the electric vehicle mounting system under rapid acceleration and rapid deceleration conditions.
Technical Paper

The Breaking Torsion Test and Quasi-Static Finite Element Simulations of the Rzeppa Type Constant Velocity Joint under a Large Joint Angle

2021-04-06
2021-01-0706
The breaking torque is an essential property that identifies the strength of driveshafts under high torque loads. In the breaking torsion test, the constant velocity joint of the driveshafts is usually loaded slowly at a very slow rotating speed under a specific joint angle until it breaks. Under different joint angles, the Rzeppa type constant velocity joint, namely ball joints (BJ), will break at different positions and with different torques. Common results of fracture position include the shaft of the outer race, the shell of the outer race, and the cage column. Simultaneously, the plastic deformation caused by compressive stress occurs at the specific position of the ball track and the cage. In order to analyze the failure reason of the ball joint under a larger joint angle, the quasi-static finite element simulations and test methods are used to analyze the damage caused by stress distribution based on material properties.
Technical Paper

Study on the Influence of Air Suspension Levelling Valve Charging and Discharging Characteristics on Heavy Truck Roll Stability

2021-04-06
2021-01-0980
Roll stability is an important attribute which must be accounted for in heavy trucks. In order to analyze the anti-roll performance of the suspension in the early period of development, engineers will generally use Multi Body Dynamics (MBD) simulation software which can save time in the product development cycle. However, air suspension employs levelling valves to adjust the height by charging and discharging air springs. The air spring is typically modeled as a closed container in the simulation; the stiffness change of the air spring caused by the levelling valve is not considered. In this paper, an air suspension with levelling valves model integrated into the multi-body dynamic model of a 6�4 heavy truck is built with a co-simulation technique to investigate the influence of three types of levelling valves arrangement on the roll performance of the suspension under two typical conditions.
Technical Paper

Study on Flow Rate and Flow Field Characteristics of Gerotor Pump with Multi-arc Combined Profile

2022-03-29
2022-01-0632
The working principle and performance test method of the gerotor pump with multi-arc combined profile are introduced. According to the formation method of the rotor tooth profile, the calculation method of the inner rotor tooth profile is introduced, and the meshing characteristics of the inner and outer rotors are analyzed. On this basis, a calculation method for the displacement and instantaneous flow rate of the gerotor pump with multi-arc combined profile is proposed. In addition, a calculation model of the flow field characteristics of the gerotor pump with multi-arc combined profile is established, and the validity of the model is verified by experiments. Based on the model of traditional single-arc gerotor pump and the model of the gerotor pump with multi-arc combined profile, the flow rate, internal flow velocity, pressure distribution and gas volume fraction distribution under different working conditions are calculated respectively.
Technical Paper

Sound Transmission Loss of Acoustic Metamaterial with Lightweight Frame and Hard Membrane-Like Material

2023-05-08
2023-01-1057
To reduce the noise in the frequency range of 100Hz~1000Hz, a metamaterial structure composed of lightweight frame, hard membrane-like material and added mass is proposed in this paper. The advantage of this structure is that it is lightweight and the membrane-like material does not need to be stressed in advance. Finite element method (FEM) and experiment are used to investigate the sound transmission loss (STL) performance of the metamaterial structure. The results show that the peak STL is caused by the local resonance of the added mass and the membrane-like material. The valley versus frequency results from the resonance frequencies of metamaterial structure, and it is divided into three resonance frequencies: resonance frequencies from added mass, membrane-like material and frame.
Technical Paper

Simulation and Optimization Method of High Frequency Dynamic Characteristics of Rubber Mount

2021-04-06
2021-01-0663
A non-linear viscoelastic constitutive model composed of Mooney-Rivlin model and multiple Maxwell models is used to calculate the high frequency dynamic characteristics of rubber mounts. The equivalent mechanical model of the rubber vibration mount is established and the difference between the drive-point dynamic stiffness and the cross-point dynamic stiffness is analyzed. The analysis shows that the use of the cross-point dynamic characteristic test method can eliminate the influence of the additional inertial force in the test, which is suitable for rubber mounts’ high-frequency dynamic characteristics test; at the same time, a finite element model of the rubber mount is built to analyze its cross- point dynamic stiffness and drive-point dynamic stiffness. The analysis results are compared with the experimental results which verifies the finite element model and the correctness of the mechanical model.
Technical Paper

Research on Sound Insulation Characteristics and Application of Acoustic Metamaterials

2022-03-29
2022-01-0343
In the field of low-frequency noise control, the acoustic metamaterials have received extensive attention from researchers. However, the existing work mainly focuses on small structures with fixed boundaries, which is quite different from engineering applications. Based on the membrane-type acoustic metamaterials, this paper uses a rigid thin plate to replace the tensioned membrane, design and manufacture of two new types of local resonance structure and studies their sound insulation properties. First, the metamaterial samples with a small size of 100mm in diameter and a large-size square with a side length of 506mm were produced, and the sound TL of the two was tested through the impedance tube and the reverberation chamber-anechoic chamber, respectively. The results show that the new structure can form an obvious sound insulation frequency band at low frequencies. Based on the finite element method, a metamaterial acoustic transmission loss calculation model is established.
Technical Paper

Research on Mid-Low Frequency Noise Reduction Material and Its Structure Design

2021-04-06
2021-01-0815
Aiming at the problem of middle and low frequency noise absorption, a combined sound-absorbing structure is designed based on porous material and a coiled-up cavity resonance structure. Combined with the sound absorption principle of porous materials and coiled-up cavities, a theoretical analytical model was established. By the finite element method, the sound absorption coefficient curve of the combined structure in a frequency range of 500-2000Hz is calculated, and the correctness of the analytical calculation and the finite element simulation calculation was verified in the impedance tube experiment. The results show that the combined structure has good sound absorption performance in the 500Hz-2000Hz frequency band, and the sound absorption peak appears near the 1108Hz frequency, reaching nearly perfect sound absorption. Compared with a single porous material, the sound absorption performance of the combined structure is better.
Technical Paper

Research on Fractal Friction Model between Balls and Arc Raceways inside a Ball Joint

2020-04-14
2020-01-1093
During the operation of the ball joint, its service life and transmission efficiency are affected by the internal friction. Taking the ball joint as the research object, based on fractal theory, the friction between the steel ball and the raceway inside the ball joint of an automotive drive shaft system is studied in this paper. During the analysis, the friction between the steel ball and the arc raceway is regarded as the friction between a sphere and an arc raceway surface. In order to describe the friction state more accurately, this paper proposes a correction coefficient to modify the distribution function of contact asperities in the plane, and obtains the distribution function of contact asperities between the sphere and the arc raceway surface. The correction coefficient is related to the load, the size parameters and the material parameters of the steel ball and the raceway.
Technical Paper

Parameters Identification of Mooney-Rivlin Model for Rubber Mount Based on Surrogate Model

2023-05-08
2023-01-1150
As an important vibration damping element in automobile, the rubber mount can effectively reduce the vibration transmitted from the engine to the frame. In this study, a method of parameters identification of Mooney-Rivlin model by using surrogate model was proposed to more accurately describe the mechanical behavior of mount. Firstly, taking the rubber mount as the research object, the stiffness measurement was carried out. And then the calculation model of the rubber mount was established with Mooney-Rivlin model. Latin hypercube sampling was used to obtain the force and displacement calculation data in different directions. Then, the parameters of the Mooney-Rivlin model were taken as the design variables. And the error of the measured force-displacement curve and the calculated force-displacement curve was taken as the system response. Two surrogate models, the response surface model and the back-propagation neural network, were established.
Technical Paper

Parameter Identification of Constitute Model of Glass Fiber Reinforced Polypropylene under Adiabatic Temperature Rise Loads

2024-04-09
2024-01-2355
To characterize the stress flow behavior of engineering plastic glass fiber reinforced polypropylene (PPGF) commonly used in automotive interior and exterior components, mechanical property is measured using a universal material testing machine and a servo-hydraulic tensile testing machine under quasi-static, high temperature, and high strain rate conditions. Stress versus strain curves of materials under different conditions are obtained. Based on the measured results, a new parameter identification method of the Johnson-Cook (J-C) constitutive model is proposed by considering the adiabatic temperature rise effect. Firstly, a material-level experiment method is carried out for glass fiber reinforced polypropylene (PPGF) materials, and the influence of wide strain rate range, and large temperature span on the material properties is studied from a macroscopic perspective.
Technical Paper

Optimization Methods to Enhance Performance of a Powertrain Mounting System at Key on and Key off

2024-04-09
2024-01-2389
To enhance the transient vibration performance of the vehicle at key on and key off, a method for optimizing mount parameters of a powertrain mounting system (PMS) is proposed. Uncertainties of mount parameters widely exist in a PMS, so a method for optimizing mount parameters of a PMS, which treats the mount parameters of a PMS as uncertain, is also proposed in this paper. Firstly, a 13 degrees of freedom (DOFs) model including car body with 3 DOFs, a PMS with 6 DOFs and unsprung mass with 4 DOFs is established, and the acceleration of the active side of mounts is calculated. An experiment is carried out to measure the accelerations located at active and passive sides of each mount and the accelerations of seat track. A comparison is made between the measured and estimated accelerations, and the proposed model is validated. Two optimization methods for the PMS are proposed based on the developed 13 DOFs model.
Journal Article

Numerical Investigation on the Internal Flow Field of Electronic Expansion Valve as the Throttle Element

2022-03-29
2022-01-0318
As one of the key components of the heat pump system, the electronic expansion valve mainly plays the role of throttling and reducing pressure in the heat pump system. The refrigerant flowing through the orifice will produce complex phase change. It is of great significance to study the internal flow field by means of CFD calculations. Firstly, a three-dimensional fluid model is established and the mesh is divided. Secondly, the phase change model is selected, the material is defined and the boundary conditions are determined. According to the principle of the fluid passing through thin-walled small holes, the flow characteristics of electronic expansion valve are theoretically analyzed. Then the flow characteristics of expansion valve are numerically calculated, and a bench for testing mass flow rate of the expansion valve is built. Then the theoretical value, CFD value and experimental value are compared to verify the correctness of the established three-dimensional fluid model.
Technical Paper

Numerical Investigation of the Static Characteristics of Solenoid Valve in Decoupled Brake-by-Wire System

2021-04-06
2021-01-0804
The static characteristics of solenoid valve play an important role in the performance of brake system and can indirectly reflect the response speed of the brake system. The static characteristics of the solenoid valve reflect the electromagnetic characteristics of the solenoid valve itself, revealing the maximum potential of the solenoid valve in the system work, which is one of the important characteristics to characterize the working ability of the solenoid valve. In this paper, a numerical calculation method is used to build a finite element model of the solenoid valve electromagnetic field on the Ansoft Maxwell simulation platform. The model takes into account the nonlinear magnetization characteristics of soft magnetic materials and the air gap.
Technical Paper

Numerical Investigation of Solenoid Valve Flow Field in Decoupled Brake-by-Wire System

2021-04-06
2021-01-0806
The decoupling brake-by-wire system controls the key components of the flow path and liquid flow of the whole brake system through the solenoid valve of the bottom control unit. The reference cross-sectional area value at the valve inlet is obtained by calculation, and the valve body structure model is established. The flow channel structure is extracted, and the porous media model is used to replace the fluid area of the filter screen at the entrance of the solenoid valve. The Fluent software is used to analyze the influence on the flow characteristics of the solenoid valve with or without a filter. The accuracy of the model is verified by the experimental results, which also show that the porous medium can effectively and accurately reflect the characteristics of the solenoid valve end filter.
Technical Paper

Modeling of Gas Charging and Discharging for Airbag Suspension System and Control of Height Adjustment

2023-04-11
2023-01-0660
Taking a closed airbag suspension system as studying objects, the nonlinear dynamic model of the reservoir, compressor, solenoid valve, pipeline and air spring is established. The compressor exhaust volume, solenoid valve flow rate and air spring charging and discharging rate are calculated and compared with experiment to validate the model. Taking pressure difference and height adjustment rate under different working conditions of an airbag suspension as control measures, a control strategy is developed based on the established nonlinear dynamic model. The result indicates that when the vehicle is in curb weight, design weight and GVW (gross vehicle weight), the working time of the compressor can be reduced by 13.6%, 15.1% and 46.5%, respectively, compared with the conventional mode, during a height adjustment cycle. Then a state observer is proposed to estimate the steady-height for reducing the disturbance of measured height from road excitation.
Journal Article

Modeling Method of Dynamic Characteristics of Hydraulic Damping Rubber Isolator

2022-03-29
2022-01-0282
The dynamic characteristics of hydraulic damping rubber isolators (such as hydraulic bushing and hydraulic mount) are related to excitation amplitude and frequency. Based on the lumped parameter model of hydraulic damping rubber isolator, a unified linear model of complex stiffness is derived and its deficiency is pointed out. Based on the derived linear model, this paper considers the nonlinear damping of inertia channel and the nonlinear stiffness of the upper chamber of the hydraulic damping rubber isolator, so as to establish a new nonlinear model, which can reflect the amplitude and frequency dependence of the dynamic characteristics of the hydraulic damping rubber isolator. Finally, the nonlinear model is used to analyze the dynamic response of hydraulic damping rubber isolator under harmonic excitation and random excitation respectively, and the results are compared with the test results.
Technical Paper

Methods for Estimating Dynamic Stiffness at High-Frequency Ranges of Rubber Mounts with Second-Stage Isolators

2021-04-06
2021-01-0670
Mount is a component used to connect the powertrain and the body, which plays an important role in isolating vibration from motor of electrical vehicles. As for traditional rubber mounts, the dynamic stiffness increases significantly with the increase of excitation frequency and will have a peak value, which is called "internal resonance" phenomenon. Compared with the traditional rubber mount, the rubber mount with second-stage isolators has a smaller dynamic stiffness at high-frequency ranges and is usually used to enhance NVH (Noise, Vibration and Harshness) performance of electric vehicles at high-frequency ranges. This paper investigates a rubber mount with second-stage isolators. The second-stage isolators are assembled with bolt holes connecting with mount and car body.
Technical Paper

Mechanical Failure Modes of Prismatic Lithium-ion Battery Separator

2022-12-16
2022-01-7119
As the power of electric vehicles (EVs), lithium-ion batteries (LIBs) are subjected to a variety of mechanical loads during electrochemical operation. Under this operating environment, lithium-ion batteries are at risk of internal short circuit, thermal runaway and even fire, threatening the safety of electric vehicles. The purpose of this paper is to investigate the mechanical behaviors and failure mechanisms of the battery separator to improve the safety of lithium-ion batteries under mechanical loads. In this study, uniaxial tensile, through-thickness compression and biaxial punch tests were performed to characterize two types of separators, dry-processed polypropylene (PP) separators and wet-processed ceramic-coated separators, and to analyze and compare their mechanical properties and failure modes. The comprehensive mechanical tests show that the failure modes of the different separator types are different, with the more anisotropic separator having more complex failure modes.
X