Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

Virtual Cylinder Pressure Sensor (VCPS) with Individual Variable-Oriented Independent Estimators

2005-04-11
2005-01-0059
Tremendous amount of useful information can be extracted from the cylinder pressure signal for engine combustion control. However, the physical cylinder pressure sensors are undesirably expensive and their health need to be monitored for fault diagnostic purpose as well. This paper presents the results of the development of a virtual cylinder pressure sensor (VCPS) with individual variable-oriented independent estimators. Two neural network-based independent cylinder pressure related variable estimators were developed and verified at steady state. The results show that these models can predict the variables correctly compared with the extracted variables from the measured physical cylinder pressure sensor signal. Good generalization capabilities of the developed models are observed in the sense that the models work well not only for the training data set but also for the new inputs that they have never been exposed to before.
Technical Paper

Utilizing Multiple Combustion Modes to Increase Efficiency and Achieve Full Load Dual-Fuel Operation in a Heavy-Duty Engine

2019-04-02
2019-01-1157
Reactivity Controlled Compression Ignition (RCCI) natural gas/diesel dual-fuel combustion has been shown to achieve high thermal efficiency with low NOX and PM emissions, but has traditionally been limited to low to medium loads. High BMEP operation typically requires high substitution rates (i.e., >90% NG), which can lead to high cylinder pressure, pressure rise rates, knock, and combustion loss. In previous studies, compression ratio was decreased to achieve higher load operation, but thermal efficiency was sacrificed. For this study, a multi-cylinder heavy-duty engine that has been modified for dual-fuel operation (diesel direct-injection and natural gas (NG) fumigated into the intake stream) was used to explore RCCI and other dual-fuel combustion modes at high compression ratio, while maintaining stock lug curve capability (i.e., extending dual-fuel operation to high loads where conventional diesel combustion traditionally had to be used).
Technical Paper

Using the Cone Calorimeter to Predict FMVSS 302 Performance of Interior and Exterior Automotive Materials

2006-04-03
2006-01-1270
Forty-eight materials from parts used inside and outside the passenger compartment of six motor vehicles were tested according to FMVSS 302. All samples passed the test although the FMVSS 302 test requirements do not apply to exterior materials. The same materials were also tested in the Cone Calorimeter (ASTM E 1354) at three heat fluxes. The FMVSS 302 performance diagram developed earlier on the basis of Cone Calorimeter data for 18 exterior materials from two vehicles appears to have more general validity for solid plastic parts, regardless whether they are taken from locations inside or outside of the passenger compartment. The previously-developed performance diagram is not applicable to plastic foams and fabrics. Additional criteria are proposed to predict whether a foam or fabric is likely to pass the FMVSS 302 test based on ignition time and peak heat release rate measured in the Cone Calorimeter at a heat flux of 35 kW/m2.
Technical Paper

Updating China Heavy-Duty On-Road Diesel Emission Regulations

2012-04-16
2012-01-0367
With the rapid expansion of the automotive market in China, air quality in the major cities has become a severe concern. Great efforts have been made in introducing new emission regulations; however, fuel and lubricant qualities, emissions aftertreatment system durability and in-use compliance to the emissions regulations still require significant improvement. China follows the European Union (EU) emission regulations in general, but different levels of standards exist. This paper gives a comprehensive overview of the current and near-future heavy-duty diesel emission regulations, as well as fuel and lubricant specifications.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

Transient Control of a Dedicated EGR Engine

2016-04-05
2016-01-0616
Southwest Research Institute (SwRI) has successfully demonstrated the cooled EGR concept via the High Efficiency Dilute Gasoline Engine (HEDGE) consortium. Dilution of intake charge provides three significant benefits - (1) Better Cycle Efficiency (2) Knock Resistance and (3) Lower NOx/PM Emissions. But EGR dilution also poses challenges in terms of combustion stability, condensation and power density. The Dedicated EGR (D-EGR) concept brings back some of the stability lost due to EGR dilution by introducing reformates such as CO and H2 into the intake charge. Control of air, EGR, fuel, and ignition remains a challenge to realizing the aforementioned benefits without sacrificing performance and drivability. This paper addresses the DEGR solution from a controls standpoint. SwRI has been developing a unified framework for controlling a generic combustion engine (gasoline, diesel, dual-fuel natural gas etc.).
Technical Paper

Toward the Environmentally-Friendly Small Engine: Fuel, Lubricant, and Emission Measurement Issues

1991-11-01
911222
Small engines which are friendly toward the environment are needed all over the world, whether the need is expressed in terms of energy efficiency, useful engine life, health benefits for the user, or emission regulations enacted to protect a population or an ecologically-sensitive area. Progress toward the widespread application of lower-impact small engines is being made through engine design, matching of engine to equipment and task, aftertreatment technology, alternative and reformulated fuels, and improved lubricants. This paper describes three research and development projects, focused on the interrelationships of fuels, lubricants, and emissions in Otto-cycle engines, which were conducted by Southwest Research Institute. All the work reported was funded internally as part of a commitment to advance the state of small engine technology and thus enhance human utility.
Technical Paper

Three-Way Catalyst Technology for Off-Road Equipment Engines

1999-09-28
1999-01-3283
A project was conducted by Southwest Research Institute on behalf of the California Air Resources Board and the South Coast Air Quality Management District to demonstrate the technical feasibility of utilizing closed-loop three-way catalyst technology in off-road equipment applications. Five representative engines were selected, and baseline emission-tested using both gasoline and LPG. Emission reduction systems, employing three-way catalyst technology with electronic fuel control, were designed and installed on two of the engines. The engines were then installed in a fork lift and a pump system, and limited durability testing was performed. Results showed that low emission levels, easily meeting CARB's newly adopted large spark-ignited engine emission standards, could be achieved.
Technical Paper

The Winch-Dozer - A Tool for Area Mine Spoil Leveling

1977-02-01
770550
A new approach to reclaiming the spoil areas produced by area-type mining operations has been developed. This system uses a machine known as a winch-dozer, consisting of a pair of large back-to-back buckets which are drawn by cable across spoil piles, moving back and forth between a “tailblock” anchor and a “drawworks” winch unit developed as an attachment to a large crawler tractor. The system is expected to reduce the cost of reclamation leveling by 40-50%. The system permits more effective power utilization due to the blade system's light weight, induces caving of spoil banks, and permits moving spoil in both directions of blade travel.
Technical Paper

The Use of Radioactive Tracer Technology to Measure Real-Time Wear in Engines and Other Mechanical Systems

2007-04-16
2007-01-1437
Radioactive tracer technology (RATT™) is an important tool for measuring real-time wear in operating engines and other mechanical systems. The use of this technology provides important wear information that is not available by other, more conventional wear measurement methods. The technology has advanced to the point where several components can be interrogated simultaneously, and new methods have extended the method to materials that are normally not amenable to radioactive tracer evaluation. In addition, sensitivity has increased so that the onset of wear can be detected long before practical with non-tracer methods. This improves the ability to measure and determine cause and effect relationships, thus providing a better understanding of wear responses to specific operating conditions and to changes in operating conditions. This paper reviews the radioactive tracer process and recent improvements that have extended its reach in both automotive and non-automotive applications.
Technical Paper

The Use of Radioactive Tracer Technology to Evaluate Engine Wear Under the Influences of Advanced Combustion System Operation and Lubricant Performance

2005-10-24
2005-01-3689
Radioactive tracer technology is an important tool for measuring component wear on a real-time basis and is especially useful in measuring engine wear as it is affected by combustion system operation and lubricant performance. Combustion system operation including the use of early and/or late fuel injection and EGR for emissions control can have a profound effect on aftertreatment contamination and engine reliability due to wear. Liner wear caused by localized fuel impingement can lead to excessive oil consumption and fuel dilution can cause excessive wear of rings and bearings. To facilitate typical wear measurement, the engine's compression rings and connecting rod bearings are initially exposed to thermal neutrons in a nuclear reactor to produce artificial radioisotopes that are separately characteristic of the ring and bearing wear surfaces.
Technical Paper

The Use of Radioactive Tracer Technology in Studying Lubricant Chemistry to Enhance Bearing and Ring Wear Control in an Operating Engine

1994-10-01
941982
Radioactive tracer technology (RAT) is an important tool in measuring component wear in an operating engine on a real-time basis. This paper will discuss the use of RAT to study and evaluate boundary lubricant and surfactant chemistries aimed at providing benefits in wear control. In particular, RAT was employed to study ring and bearing wear as a function of engine operating condition (speed, load, and temperature) and lubricant characteristics. Prior to testing, the engine's compression rings and connecting rod bearings were subjected to bulk thermal neutron bombardment in a nuclear reactor to produce artificial radioisotopes that were separately characteristic of the ring and bearing wear surfaces. The irradiated parts were installed in the test engine, after which testing to a specific test matrix was accomplished.
Technical Paper

The Texas Diesel Fuels Project, Part 1: Development of TxDOT-Specific Test Cycles with Emphasis on a “Route” Technique for Comparing Fuel/Water Emulsions and Conventional Diesel Fuels

2004-03-08
2004-01-0090
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel in July 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel, which they use in both their on-road and off-road equipment. The study also incorporated analyses for the fleet operated by the Associated General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel fuel in their equipment. The study included comparisons of fuel economy and emissions for the emulsified fuel relative to the conventional diesel fuels. Cycles that are known to be representative of the typical operations for TxDOT and AGC equipment were required for use in this study. Four test cycles were developed from data logged on equipment during normal service: 1) the TxDOT Telescoping Boom Excavator Cycle, 2) the AGC Wheeled Loader Cycle, 3) the TxDOT Single-Axle Dump Truck Cycle, and 4) the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

The Stratified Charge Glowplug Ignition (SCGI) Engine with Natural Gas Fuel

1991-09-01
911767
The objective was to demonstrate the feasibility of operating a natural gas two-stroke engine using glow plug ignition with very lean mixtures. Based on the results obtained, the term SCGI (stratified charge glow plug ignition) was coined to describe the engine. An JLO two-stroke diesel engine was converted first to a natural gas fueled spark-ignited engine for the baseline tests, and then to an SCGI engine. The SCGI engine used a gas operated valve in the cylinder head to admit the natural gas fuel, and a glow plug was used as a means to initiate the combustion. The engine was successfully run, but was found to be sensitive to various conditions such as the glow plug temperature. The engine would run very lean, to an overall equivalence ratio of 0.33, offering the potential of good fuel economy and low NOx emissions.
Journal Article

The Role of EGR in PM Emissions from Gasoline Engines

2010-04-12
2010-01-0353
A dilute spark-ignited engine concept has been developed as a potential low cost competitor to diesel engines by Southwest Research Institute (SwRI), with a goal of diesel-like efficiency and torque for light- and medium-duty applications and low-cost aftertreatment. The targeted aftertreatment method is a traditional three-way catalyst, which offers both an efficiency and cost advantage over typical diesel aftertreatment systems. High levels of exhaust gas recirculation (EGR) have been realized using advanced ignition systems and improved combustion, with significant improvements in emissions, efficiency, and torque resulting from using high levels of EGR. The primary motivation for this work was to understand the impact high levels of EGR would have on particulate matter (PM) formation in a port fuel injected (PFI) engine. While there are no proposed regulations for PFI engine PM levels, the potential exists for future regulations, both on a size and mass basis.
Technical Paper

The New BAIC High Efficiency Turbocharged Engine with LPL-EGR

2017-10-08
2017-01-2414
The new Beijing Automotive Industry Corporation (BAIC) engine, an evolution of the 2.3L 4-cylinder turbocharged gasoline engine from Saab, was designed, built, and tested with close collaboration between BAIC Motor Powertrain Co., Ltd. and Southwest Research Institute (SwRI®). The upgraded engine was intended to achieve low fuel consumption and a good balance of high performance and compliance with Euro 6 emissions regulations. Low fuel consumption was achieved primarily through utilizing cooled low pressure loop exhaust gas recirculation (LPL-EGR) and dual independent cam phasers. Cooled LPL-EGR helped suppress engine knock and consequently allowed for increased compression ratio and improved thermal efficiency of the new engine. Dual independent cam phasers reduced engine pumping losses and helped increase low-speed torque. Additionally, the intake and exhaust systems were improved along with optimization of the combustion chamber design.
Journal Article

The Interaction of Fuel Anti-Knock Index and Cooled EGR on Engine Performance and Efficiency

2012-04-16
2012-01-1149
Experiments were performed on a 2.4L boosted, MPI gasoline engine, equipped with a low-pressure loop (LPL) cooled EGR system and an advanced ignition system, using fuels with varying anti-knock indices. The fuels were blends of 87, 93 and 105 Anti-Knock Index (AKI) gasoline. Ignition timing and EGR sweeps were performed at various loads to determine the tradeoff between EGR level and fuel octane rating. The resulting engine data was analyzed to establish the relationship between the octane requirement and the level of cooled EGR used in a given application. In addition, the combustion difference between fuels was examined to determine the effect that fuel reactivity, in the form of anti-knock index (AKI), has on EGR tolerance and burn rate. The results indicate that the improvement in effective AKI of the fuel from using EGR is constant across commercial grade gasolines at about 0.5 ON per % EGR.
Journal Article

The Interaction between Fuel Anti-Knock Index and Reformation Ratio in an Engine Equipped with Dedicated EGR

2016-04-05
2016-01-0712
Experiments were performed on a small displacement (< 2 L), high compression ratio, 4 cylinder, port injected gasoline engine equipped with Dedicated EGR® (D-EGR®) technology using fuels with varying anti-knock properties. Gasolines with anti-knock indices of 84, 89 and 93 anti-knock index (AKI) were tested. The engine was operated at a constant nominal EGR rate of ∼25% while varying the reformation ratio in the dedicated cylinder from a ϕD-EGR = 1.0 - 1.4. Testing was conducted at selected engine speeds and constant torque while operating at knock limited spark advance on the three fuels. The change in combustion phasing as a function of the level of overfuelling in the dedicated cylinder was documented for all three fuels to determine the tradeoff between the reformation ratio required to achieve a certain knock resistance and the fuel octane rating.
Journal Article

The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior

2017-03-28
2017-01-0685
The impact of additive and oil chemistry on low speed pre-ignition (LSPI) was evaluated. An additive metals matrix varied the levels of zinc dialkyldithiophosphate (ZDDP), calcium sulfonate, and molybdenum within the range of commercially available engine lubricants. A separate test matrix varied the detergent chemistry (calcium vs. magnesium), lubricant volatility, and base stock chemistry. All lubricants were evaluated on a LSPI test cycle developed by Southwest Research Institute within its Pre-Ignition Prevention Program (P3) using a GM LHU 2.0 L turbocharged GDI engine. It was observed that increasing the concentration of calcium leads to an increase in the LSPI rate. At low calcium levels, near-zero LSPI rates were observed. The addition of zinc and molybdenum additives had a negative effect on the LSPI rate; however, this was only seen at higher calcium concentrations.
X