Refine Your Search

Topic

Search Results

Technical Paper

Unrestrained, Front Seat, Child Surrogate Trajectories Produced by Hard Braking

1982-02-01
821165
This paper describes a study to determine the influence of preimpact vehicle braking on the positions and postures of unrestrained, children in the front seat at the time of collision. Anesthetized baboons were used as child surrogates. The unrestrained animals were placed in various initial sitting, kneeling, and standing positions typically assumed by children while traveling in automobiles. Tests were conducted with various front seat positions and seat covering materials. Measurements were made of pertinent vehicle dynamics and surrogate kinematics during the hard braking event. For each initial condition evaluated, a photosequence is given showing typical positions and postures of the surrogate during the braking event.
Technical Paper

The Texas Diesel Fuels Project, Part 1: Development of TxDOT-Specific Test Cycles with Emphasis on a “Route” Technique for Comparing Fuel/Water Emulsions and Conventional Diesel Fuels

2004-03-08
2004-01-0090
The Texas Department of Transportation (TxDOT) began using an emulsified diesel fuel in July 2002. They initiated a simultaneous study of the effectiveness of this fuel in comparison to 2D on-road diesel fuel, which they use in both their on-road and off-road equipment. The study also incorporated analyses for the fleet operated by the Associated General Contractors (AGC) in the Houston area. Some members of AGC use 2D off-road diesel fuel in their equipment. The study included comparisons of fuel economy and emissions for the emulsified fuel relative to the conventional diesel fuels. Cycles that are known to be representative of the typical operations for TxDOT and AGC equipment were required for use in this study. Four test cycles were developed from data logged on equipment during normal service: 1) the TxDOT Telescoping Boom Excavator Cycle, 2) the AGC Wheeled Loader Cycle, 3) the TxDOT Single-Axle Dump Truck Cycle, and 4) the TxDOT Tandem-Axle Dump Truck Cycle.
Technical Paper

The ASTM Test Monitoring Center - Evolving in a Changing Industry

2000-10-16
2000-01-2946
This paper traces the evolution of the ASTM Test Monitoring Center (TMC) from its modest beginnings in 1976 to the present. Formed as an unbiased and non-aligned group within ASTM Subcommittee D02.B, the TMC operates a reference oil based calibration system that serves both the producers and users of automotive lubricants. Governed by the ASTM Test Monitoring Board, the center's primary mission is to calibrate engine dynamometer test stands used to conduct various ASTM test methods for evaluating lubricant performance. The core services of the TMC have remained the same over its nearly 25 year history. The center stores and distributes ASTM reference oils and is responsible for assuring, through the use of analytical testing, the quality and consistency of the oils. The number of reference oils handled by the TMC has steadily increased over time such that today the center inventories some 100 different formulations having a total volume of 65,000 gallons.
Technical Paper

Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles

2019-04-02
2019-01-0116
A new generation of vehicle dynamics and powertrain control technologies are being developed to leverage information streams enabled via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity [1, 2, 3, 4, 5]. While algorithms that use these connected information streams to enable improvements in energy efficiency are being studied in detail, methodologies to quantify and analyze these improvements on a vehicle have not yet been explored fully. A procedure to test and accurately measure energy-consumption benefits of a connected and automated vehicle (CAV) is presented. The first part of the test methodology enables testing in a controlled environment. A traffic simulator is built to model traffic flow in Fort Worth, Texas with sufficient accuracy. The benefits of a traffic simulator are two-fold: (1) generation of repeatable traffic scenarios and (2) evaluation of the robustness of control algorithms by introducing disturbances.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Technical Paper

SCR Deactivation Study for OBD Applications

2012-04-16
2012-01-1076
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO₂ formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH₃) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH₃ transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Technical Paper

Responses of Animals Exposed to Deployment of Various Passenger Inflatable Restraint System Concepts for a Variety of Collision Severities and Animal Positions

1982-01-01
826047
This paper summarizes the results of tests conducted with anesthetized animals that were exposed to a wide range of passenger inflatable restraint cushion forces for a variety of impact sled - simulated accident conditions. The test configurations and inflatable restraint system concepts were selected to produce a broad spectrum of injury types and severities to the major organs of the head, neck and torso of the animals. These data were needed to interpret the significance of the responses of an instrumented child dummy that was being used to evaluate child injury potential of the passenger inflatable restraint system being developed by General Motors Corporation. Injuries ranging from no injury to fatal were observed for the head, neck and abdomen regions. Thoracic injuries ranged from no injury to critical, survival uncertain.
Technical Paper

Predicting Sequence VI, VIA, and VIB Engine Tests Using Laboratory Methods

2001-05-07
2001-01-1904
Engine tests are widely used to measure the ability of lubricating oils to reduce fuel consumption through improved mechanical efficiency. Previous publications have correlated laboratory-scale tests with the well-established Sequence VI and VIA engine methods. The present paper uses a matrix of 66 oils to produce an empirical model for the recently developed Sequence VIB engine test. A smaller matrix of oils was available for correlation with Sequence VI and VIA results. The models combine a purposely-designed friction test with conventional measures of kinematic and high-temperature high-shear viscosity. Good correlation was obtained with the Sequence VI, VIA and VIB results, as well as each of the five stages in the Sequence VIB test. The effects of lubricant oxidation in the 96-hour FEI-2 portion of the Sequence VIB test were similar for each of the oils. As a result, good correlation was observed between FEI-1 and FEI-2 results from the VIB test.
Technical Paper

Particle Number Emissions Evaluation for Conventional SI, Low-Pressure Loop EGR, and D-EGR Combustion Strategies

2021-04-06
2021-01-0485
The size and distribution of a vehicle’s tailpipe particulate emissions can have a strong impact on human health, especially if the particles are small enough to enter the human respiratory system. Gasoline direct injection (GDI) has been adopted widely to meet stringent fuel economy and CO2 regulations across the globe for recent engine architectures. However, the introduction of GDI has led to challenges concerning the particulate matter (PM) and particle number (PN) emissions from such engines. This study aimed to compare the particulate emissions of three SI combustion strategies: conventional SI, conventional stoichiometric low-pressure exhaust gas recirculation (LP-EGR), and Dedicated-EGR (D-EGR) at four specific test conditions. It was shown that the engine-out PM/PN for both the EGR strategies was lower than the conventional SI combustion under normal operating conditions. The test conditions were chosen to represent the WLTC test conditions.
Technical Paper

Parametric Design of Helical Intake Ports

1995-02-01
950818
The design of helical Intake ports for swirl generation is a process that has been developed over a number of years through primarily empirical methods. A number of design rules have been established that enable designers to develop ports that approach the state-of-the-art for maximum swirl generation with minimum pressure loss. More recently, computer-aided design (CAD) tools have been introduced that permit geometry and features to be accurately defined by mathematical surface descriptions, and to be parameterized such that derived geometry is updated automatically along with parent features. The author has developed a parametric design approach for helical ports that incorporates the lessons learned from experience into a systematic design procedure. This procedure takes advantage of the current CAD capabilities to expedite the design process and improve the result.
Technical Paper

Paint Integrity and Corrosion Sensor

2002-03-04
2002-01-0205
Atmospheric corrosion of steels, aluminum alloys, and Al-clad aluminum alloys is a problem for many civil engineering structures, commercial and military vehicles, and aircraft. Paint is usually the primary means to prevent the corrosion of steel bridge components, automobiles, trucks, and aircraft. Under ideal conditions, the coating provides a continuous layer that is impervious to moisture. At present, maintenance cycles for commercial and military aircraft and ground vehicles, as well as engineered structures, is based on experience and appearance rather than a quantitative determination of coating integrity. To improve the maintenance process and reduce costs, sensors are often used to monitor corrosion. The present suite of sensors designed to detect corrosion and marketed to predict the lifetime of the engineered components, however, are not useful for determining the condition of the protective paint coatings.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

Numerical Simulations of SAE #2 Machine Tests

1999-10-25
1999-01-3617
For many years the SAE No. 2 friction machine has been used to measure the coefficient of friction obtained through the interaction of fluid, steel and clutch material. In addition, by forcing energy through the wetted clutch-steel interface and measuring the decay of the coefficient of friction over time, the durability of the materials and fluids can be determined. This paper discusses the use of a numerical computer model to duplicate SAE No. 2 data. The inputs for this model include test stand geometry and physical properties as well as output from a low velocity friction apparatus (LVFA). The LVFA uses a small disc of friction material, a small disc of steel material, and a small sample of fluid to generate a coefficient versus speed curve (m vs v). It was found that torque traces and speed traces generated by this model correlate well with actual SAE No. 2 data. THERE ARE SEVERAL REASONS for creating this model.
Technical Paper

Noise Reduction Techniques as They Apply to Engine-Generator Design and Treatment

1969-02-01
690755
Small engines may require soundproofing to eliminate one or more of the following effects: hearing loss, speech interference, community annoyance, detectability, and psychological disorientation. Detectability criteria are frequently associated with military applications and may require the use of a soundproof enclosure in addition to other engine treatments. Acoustical noise sources are conveniently classed as either aerodynamic or mechanical. Aerodynamic sources are predominant on small engines. Treatment of exhaust noise by individual components, e.g., muffler, is inadequate; a system approach, through the use of an electro-acoustic analog computer, has proved to be a much more satisfactory procedure.
Technical Paper

Navigation Control in an Urban Autonomous Ground Vehicle

2011-04-12
2011-01-1037
Southwest Research Institute developed an Autonomous Ground Vehicle (AGV) capable of navigating in urban environments. The paper first gives an overview of hardware and software onboard the vehicle. The systems onboard are classified into perception, intelligence, and command and control modules to mimic a human driver. Perception deals with sensing from the world and translating it into situation awareness. This awareness is then fed into intelligence modules. Intelligence modules take inputs from the user to understand the need to navigate from its current location to another destination and, then, generate a path between them on urban, drivable surfaces using its internal urban database. Situational awareness helps intelligence to update the path in real time by avoiding any static/moving obstacles while following traffic rules.
Technical Paper

Model-Based Approach to Estimate Fuel Savings from Series Hydraulic Hybrid Vehicle: Model Development and Validation

2011-09-13
2011-01-2274
A simulation framework with a validated system model capable of estimating fuel consumption is a valuable tool in analysis and design of the hybrid vehicles. In particular, the framework can be used for (1) benchmarking the fuel economy achievable from alternate hybrid powertrain technologies, (2) investigating sensitivity of fuel savings with respect to design parameters (for example, component sizing), and (3) evaluating the performance of various supervisory control algorithms for energy management. This paper describes such a simulation framework that can be used to predict fuel economy of series hydraulic hybrid vehicle for any specified driver demand schedule (drive cycle), developed in MATLAB/Simulink. The key components of the series hydraulic hybrid vehicle are modeled using a combination of first principles and empirical data. A simplified driver model is included to follow the specified drive cycle.
Technical Paper

Mobile Fuel Filtration/Additive Unit

1993-03-01
930015
Due to the serious need of the U.S. Army for a simple and rapid mobile fuel filtration system, a Filtration/Additive Unit (FAU) has been designed and fabricated. The primary use of the FAU is to aid in the cleanup of fuel in Army ground vehicles and equipment fuel cells and storage tanks. The FAU provides a simple and rapid means to remove gross quantities of particulate and water. The unit consists of a trailer-mounted filtration and additive system capable of dispensing three separate additives into the fuel. The FAU was designed to rapidly clean and additive-treat diesel or aviation-type fuels in volumes between 400 and 4500 liters. However, the FAU is capable of processing larger quantities, such as in storage tanks. The designed pump rate is 225 liters per minute (minimum) using diesel fuel at its maximum viscosity (4.1 cSt at 40°C).
Journal Article

Impact of Second NH3 Storage Site on SCR NO x Conversion in an Ultra-Low NO x Aftertreatment System

2023-04-11
2023-01-0367
Typical two-site storage-based SCR plant models in literature consider NH3 stored in the first site to participate in NH3 storage, NOx conversion and second site to only participate in NH3 storage passively. This paper focuses on quantifying the impact of stored NH3 in the second site on the overall NOx conversion for an ultra-low NOx system due to intra site NH3 mass transfer. Accounting for this intra site mass transfer leads to better prediction of SCR out NH3 thus ensuring compliance with NH3 coverage targets and improved dosing characteristics of the controller that is critical to achieving ultra-low NOx standard. The stored NH3 in the second site undergoes mass transfer to the first site during temperature ramps encountered in a transient cycle that leads to increased NOx conversion in conditions where the dosing is switched off. The resultant NH3 coverage fraction prediction is critical in dosing control of SCR.
Technical Paper

Fuel Issues for Liquefied Natural Gas Vehicles

1992-10-01
922360
Natural gas vehicle (NGV) fuel energy storage density is a key issue, particularly in many heavy-duty applications where compressed natural gas may have unattractively low energy density. For these uses, benefits can be derived by using liquefied natural gas (LNG). From a market perspective, LNG can play a role for transportation because it is available in various areas of the United States and throughout the world. This paper provides a general overview of LNG use for vehicles and specifically an analysis of factors governing the behavior of this cryogenic fluid in a confined vessel. This is intended to provide an understanding of the cause/effect relation between LNG fuel composition, tank heat influx, and rate of fuel usage or storage time.
Technical Paper

Experimental Study of Wet-Brake Friction

1985-09-01
851575
An experimental program was designed to determine friction characteristics between brake pads and metal rotors that could indicate a brake fluid's propensity to cause chatter in wet-brakes. Friction was measured on a bench version of the John Deere wet-brake qualification system. Rotor and pad supports were made very rigid to avoid chatter in the simulator. One type of pad was run on cast-iron and mild steel rotors using two reference oils, one giving unacceptable levels of chatter and the other giving acceptable levels as previously determined in full-scale tests on the Deere system. The outstanding discriminating characteristic was the drop in friction from breakaway of the pad from the rotor. The ratio of the initial drop in the friction coefficient between unacceptable and acceptable oils for all conditions of the testing ranged from 1.7 to 2.0
X