Refine Your Search

Topic

Author

Search Results

Technical Paper

Vektron® 6913 Gasoline Additive NOX Evaluation Fleet Test Program

2001-05-07
2001-01-1997
A 28-vehicle fleet test was executed to verify and quantify the NOX emissions reductions achieved through the use of Infineum's Vektron 6913 gasoline additive. The fleet composition and experimental design were finalized in collaborative discussions with US Environmental Protection Agency (EPA) Office of Transportation & Air Quality (OTAQ) and consultation / advice from several major US automotive manufacturers. The test was conducted over a period of five months at Southwest Research Institute. Statistical analysis of the emissions data indicated a 10% average fleet reduction in NOX emissions without any negative impact on other criteria pollutants (CO, HC) or fuel economy.
Technical Paper

Ultra Low Sulfur Diesel (ULSD) Sulfur Test Method Variability: A Statistical Analysis of Reproducibility from the 2005 US EPA ULSD Round-Robin Test Program

2006-10-16
2006-01-3360
Beginning June 1, 2006, 80% of the highway diesel fuel produced in the United States had to contain 15 ppm sulfur or less. To account for sulfur test method variability, the United States Environmental Protection Agency (US EPA) allowed a 2 ppm compliance margin, meaning that in an EPA enforcement action fuel measuring 17 ppm or less would still be deemed compliant since the true sulfur level could still be 15 ppm. Concern was voiced over the appropriateness of the 2 ppm compliance margin, citing recent American Society for Testing and Materials (ASTM) round-robin and crosscheck test program results that showed sulfur test lab-to-lab variability (reproducibility) on the order of 4 to 5 ppm depending on test method.
Technical Paper

The Port Fuel Injector Deposit Test - A Statistical Review

1998-10-19
982713
The Port Fuel Injector (PFI) Deposit Test is a performance-based test procedure developed by the Coordinating Research Council and adopted by state and federal regulatory agencies for fuel qualification in the United States. To date, Southwest Research Institute (SwRI) has performed over 375 PFI tests between 1991 and 1998 for various clients. This paper details the analyses of these tests. Of the 375 tests, 199 were performed as keep-clean tests and 176 were performed as clean-up tests. The following areas of interest are discussed in this paper: Keep-clean versus clean-up test procedures Linearity of deposit formation Injector position effects as related to fouling Dirtyup / cleanup phenomena Seasonal effects This paper draws the conclusion that it is easier to keep new injectors from forming deposits than it is to clean up previously formed deposits. It was found that injector deposit formation is generally non-linear.
Journal Article

The Impact of Lubricant Volatility, Viscosity and Detergent Chemistry on Low Speed Pre-Ignition Behavior

2017-03-28
2017-01-0685
The impact of additive and oil chemistry on low speed pre-ignition (LSPI) was evaluated. An additive metals matrix varied the levels of zinc dialkyldithiophosphate (ZDDP), calcium sulfonate, and molybdenum within the range of commercially available engine lubricants. A separate test matrix varied the detergent chemistry (calcium vs. magnesium), lubricant volatility, and base stock chemistry. All lubricants were evaluated on a LSPI test cycle developed by Southwest Research Institute within its Pre-Ignition Prevention Program (P3) using a GM LHU 2.0 L turbocharged GDI engine. It was observed that increasing the concentration of calcium leads to an increase in the LSPI rate. At low calcium levels, near-zero LSPI rates were observed. The addition of zinc and molybdenum additives had a negative effect on the LSPI rate; however, this was only seen at higher calcium concentrations.
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
Technical Paper

The Effect of Fuel Injection on the Velocity Fluctuations in the Bowl of a DISI Engine

2005-05-11
2005-01-2102
Swirl plane Particle Image Velocimetry (PIV) measurements were performed in a single-cylinder optically accessible gasoline direct injection (DISI) engine using a borescope introduced through the spark plug hole. This allowed the use of a contoured piston and the visualization of the flow field in and around the piston bowl. The manifold absolute pressure (MAP) was fixed at 90 kPa and the engine speed was varied in increments of 250 rpm from 750 rpm to 2000 rpm. Images were taken from 270° to 320° bTDC of compression at 10° intervals to study the evolution of the velocity fluctuations. Measurements were performed with and without fuel injection to study its effect on the in-cylinder flow fields. Fuel was injected at 10 MPa and 5 MPa. The 2-D spatial mean velocities of individual flow fields and their decompositions were averaged over 100 cycles and used to investigate the effects of engine speed and image timing on the flow field.
Technical Paper

The ASTM Test Monitoring Center - Evolving in a Changing Industry

2000-10-16
2000-01-2946
This paper traces the evolution of the ASTM Test Monitoring Center (TMC) from its modest beginnings in 1976 to the present. Formed as an unbiased and non-aligned group within ASTM Subcommittee D02.B, the TMC operates a reference oil based calibration system that serves both the producers and users of automotive lubricants. Governed by the ASTM Test Monitoring Board, the center's primary mission is to calibrate engine dynamometer test stands used to conduct various ASTM test methods for evaluating lubricant performance. The core services of the TMC have remained the same over its nearly 25 year history. The center stores and distributes ASTM reference oils and is responsible for assuring, through the use of analytical testing, the quality and consistency of the oils. The number of reference oils handled by the TMC has steadily increased over time such that today the center inventories some 100 different formulations having a total volume of 65,000 gallons.
Technical Paper

SwRI-BMW N.A. Intake Valve Deposit Test - A Statistical Review

1992-10-01
922215
The SwRI/BMW N.A. Intake Valve Deposit Test procedure was the first performance-based test procedure adopted for fuels qualification in the United States. The initial fuel evaluations were begun in January 1988 with six 1985 BMW 318i vehicles. Since that time, the fleet has grown to include over 60 BMW cars, and more than 2000 tests have been performed. This paper gives a statistical summary of approximately 1800 tests performed over a four-year period. Performance data and possible sources of test variation are discussed. Data and analyses offered represent results of tests by all clients. However, data is presented such that no individual test or client is identified.
Technical Paper

Simultaneous Application of Optical Spark Plug Probe and Head Gasket Ionization Probe to a Production Engine

1993-03-01
930464
The optical spark plug probe and ionization head gasket probe developed at Sandia Laboratories were applied to one cylinder of a production multicylinder automotive gasoline engine. The purpose of this application is to eventually study combustion phenomena leading to high emissions under cold start and cold idle conditions. As a first step in studying cold start combustion and emissions issues, diagnostic instrumentation was simultaneously applied to a production engine under steady state idle, road load and an intermediate load-speed condition. The preliminary application of such instrumentation is the subject of the present paper. The spark plug probe was redesigned for ease of use in production engines and to provide a more robust design. The two probes were geometrically oriented to obtain radial line-up between the optical windows and ionization probes. Data were taken simultaneously with both probes at the three load-speed conditions mentioned above.
Journal Article

Performance and Emissions of Diesel and Alternative Diesel Fuels in a Heavy-duty Industry-Standard Older Engine

2010-10-25
2010-01-2281
Conventional diesel fuel has been in the market for decades and used successfully to run diesel engines of all sizes in many applications. In order to reduce emissions and to foster energy source diversity, new fuels such as alternative and renewable, as well as new fuel formulations have entered the market. These include biodiesel, gas-to-liquid, and alternative formulations by states such as California. Performance variations in fuel economy, emissions, and compatibility for these fuels have been evaluated and debated. In some cases contradictory views have surfaced. “Sustainable”, “Renewable”, and “Clean” designations have been interchanged. Adding to the confusion, results from one fuel in one type of engine such as an older heavy-duty engine, is at times compared to that of another type such as a modern light-duty. This study was an attempt to compare the performance of several fuels in an identical environment, using the same engine, for direct comparison.
Technical Paper

Performance and Emissions of Diesel and Alternative Diesel Fuels in Modern Light-Duty Diesel Vehicles

2011-09-11
2011-24-0198
Conventional diesel fuel has been in the market for decades and used successfully to run diesel engines of all sizes in many applications. In order to reduce emissions and to foster energy source diversity, new fuels such as alternative and renewable, as well as new fuel formulations have entered the market. These include biodiesel, gas-to-liquid, and alternative formulations by states such as California. Performance variations in fuel economy, emissions, and compatibility for these fuels have been evaluated and debated. In some cases contradictory views have surfaced. “Sustainable”, “Renewable”, and “Clean” designations have been interchanged. Adding to the confusion, results from one fuel in one type of engine such as an older heavy-duty engine, is at times compared to that of another fuel in another type such as a modern light-duty engine. This study was an attempt to compare the performance of several fuels in identical environments, using the same engine, for direct comparison.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Technical Paper

Lean NOx Catalyst Evaluation and Characterization

1993-03-01
930736
Copper ion exchange procedures were used to prepare zeolite-based catalysts for NOx reduction in lean (oxygen-rich) exhaust. Energy dispersive x-ray fluorescence and scanning electron microscopy analyses confirmed the presence of copper in the zeolite matrix. Zeolites were applied onto honeycomb and foam substrates, and evaluated for catalytic NOx reduction efficiency using engine exhaust. Copper-exchanged zeolite catalysts prepared for this study revealed NOx reduction of 95 percent for a period of seven minutes using previously adsorbed exhaust hydrocarbons as the reducing agent. Experiments using ethylene injection to supplement the exhaust suggest long-term and sustained NOx reduction, initially observed at 52 percent. Experimental results and performance comparisons of ZSM-5, mordenite, and Y-type zeolites are discussed. Zeolite catalysts based on Cu-mordenite showed high levels of initial NOx reduction, while results using Cu-ZSM-5 suggested better long-term activity.
Technical Paper

Investigation of Diesel Spray Structure and Spray/Wall Interactions in a Constant Volume Pressure Vessel

1994-10-01
941918
High-speed movie films, and laser-diffraction drop sizing were used to evaluate the structure, penetration rate, cone angle, and drop size distribution of diesel sprays in a constant volume pressure vessel. As further means of evaluating the data, comparisons are made between the film measurements, and calculations from a dense gas jet model. In addition to the high-speed film data that describes the overall structure of the spray as a function of time, a laser diffraction instrument was used to measure drop size distribution through a cross-section of the spray. In terms of the growth of the total spray volume (a rough measure of the amount of air entrained in the spray), spray impingement causes an initial delay, but generally the same overall growth rate as an equivalent unimpeded spray. Agreement between measurements and calculations is excellent for a diesel spray with a 0.15 mm D orifice and relatively high injection pressures.
Technical Paper

Hybrid Robust Control for Engines Running Low Temperature Combustion and Conventional Diesel Combustion Modes

2007-04-16
2007-01-0770
This paper describes a hybrid robust nonlinear control approach for modern diesel engines running low temperature combustion and conventional diesel combustion modes. Using alternative combustion modes has become a promising approach to reduce engine emissions. However, due to very different in-cylinder conditions and fueling parameters for different combustion modes, control of engines operating multiple combustion modes is very challenging. It becomes difficult for conventional calibration / mapping based approaches to produce satisfactory results in terms of engine torque responses and emissions. Advanced control techniques are then demanded to accomplish the tasks. An innovative hybrid control system is designed to track different key engine operating variables at different combustion modes as well as avoid singularity which is inherent for turbocharged diesel engines running multiple combustion modes.
Technical Paper

Fuel Lubricity: Statistical Analysis of Literature Data

2000-06-19
2000-01-1917
A number of laboratory-scale test methods are available to predict the effects of fuel lubricity on injection system wear. Anecdotal evidence exists to indicate that these methods produce poor correlation with pump wear, particularly for fuels that contain lubricity additives. The issue is further complicated by variations in the lubricity requirements of full-scale equipment and the test methodologies used to evaluate the pumps. However, the cost of performing full-scale equipment testing severely limits the quantity of data available for validation of the laboratory procedures at any single location. In the present study, the technical literature was reviewed and all previously published data was combined to form a single database of 175 pump stand results. This volume of data allows far more accurate statistical analysis than is possible with tests performed at a single location. The results indicate differences in the effectiveness of the standardized laboratory-scale methods.
Journal Article

Fuel Additive Transport into Engine Oil Determination using Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC)

2021-09-21
2021-01-1149
The transport of fuel-borne additives into the engine oil is a critical factor for the efficacy with which the additive functionality can be imparted on the engine. This paper describes the combination of Laser Induced Fluorescence (LIF) and Liquid Chromatography (LC) to determine the real-time additive concentrations and transfer ratios in a spark-ignition, 2-liter GM LHU engine. The current research used a continuous sample circuit from the engine sump which passed through an integrating cavity flow cell to enhance the LIF signal. In the absence of a fluorescence signature of any of the native additive species, a suitable fluorescing dye was selected to simulate the additive. After establishing rigorous calibration curves, LC was employed as a referee method to do a direct comparison with the LIF determined dye concentrations.
Technical Paper

Effects of Cetane Number, Aromatics, and Oxygenates on Emissions From a 1994 Heavy-Duty Diesel Engine With Exhaust Catalyst

1995-02-01
950250
A Coordinating Research Council sponsored test program was conducted to determine the effects of diesel fuel properties on emissions from two heavy-duty diesel engines designed to meet EPA emission requirements for 1994. Results for a prototype 1994 DDC Series 60 were reported in SAE Paper 941020. This paper reports the results from a prototype 1994 Navistar DTA-466 engine equipped with an exhaust catalyst. A set of ten fuels having specific variations in cetane number, aromatics, and oxygen were used to study effects of these fuel properties on emissions. Using glycol diether compounds as an oxygenated additive, selected diesel fuels were treated to obtain 2 and 4 mass percent oxygen. Cetane number was increased for selected fuels using a cetane improver. Emissions were measured during transient FTP operation of the Navistar engine tuned for a nominal 5 g/hp-hr NOx, then repeated using a 4 g/hp-hr NOx calibration.
Technical Paper

Effects of Cetane Number on Emissions From a Prototype 1998 Heavy-Duty Diesel Engine

1995-02-01
950251
As stringent emission regulations further constrain engine manufacturers by tightening both NOx and particulate emission limits, a knowledge of fuel effects becomes more important than ever. Among the fuel properties that affect heavy-duty diesel engine emissions, cetane number can be very important. Part of the CRC-APRAC VE-10 Project was developed to quantify the effects of cetane number on NOx and other emissions from a prototype 1998 Detroit Diesel Series 60. Three fuels with different natural cetane number (41, 45, 52) were treated with several levels and types of cetane improvers to study a range of cetane number from 40 to 60. Statistical analysis was used to define how regulated emissions from this prototype 1998 engine decreased with chemically-induced cetane number increase. Variation of HC, CO, NOx, and PM were modeled using a combination of a fuel's naturally-occurring cetane number and its total cetane number obtained with cetane improver.
X