Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
Technical Paper

The Diesel Aftertreatment Accelerated Aging Cycle Protocol: An Advanced Aftertreatment Case Study

2020-09-15
2020-01-2210
As agencies and governing bodies evaluate the feasibility of reduced emission standards, additional focus has been placed on technology durability. This is seen in proposed updates, which would require Original Equipment Manufacturers (OEMs) to certify engine families utilizing a full useful life (FUL) aftertreatment system. These kinds of proposed rulings would place a heavy burden on the manufacturer to generate FUL components utilizing traditional engine aging methods. Complications in this process will also increase the product development effort and will likely limit the amount of aftertreatment durability testing. There is also uncertainty regarding the aging approach and the representative impact compared to field aged units. Existing methodologies have evolved to account for several deterioration mechanisms that, when controlled, can be utilized to create a flexible aging protocol. As a result, these methodologies provide the necessary foundation for continued development.
Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
Technical Paper

Optimization of Surfactant and Catalyst Modified Urea-Water Solution Formulation for Deposit Reduction in SCR Aftertreatment Systems

2022-03-29
2022-01-0541
Selective Catalytic Reduction is the primary method of NOX emission abatement in lean-burn internal combustion. This process requires the decomposition of a 32.5 wt. % urea-water solution (UWS) to provide ammonia as a reducing agent for NOX, but at temperatures < 250 °C the injection of UWS is limited due to the formation of harmful deposits within an aftertreatment system and decreased ammonia production. Previous work has sufficiently demonstrated that the addition of surfactant and a urea/isocyanic acid (HNCO) decomposition catalyst to UWS can significantly decrease deposit formation within an aftertreatment system. The objective of this work was to further optimize the modified UWS formulation by investigating different types and concentrations of surfactants and titanium-based urea/HNCO catalyst. Because there is a correlation between surface tension and water evaporation, it was theorized that minimizing the surface tension of UWS would result in decreased deposit formation.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Journal Article

Meeting Future NOX Emissions Over Various Cycles Using a Fuel Burner and Conventional Aftertreatment System

2022-03-29
2022-01-0539
The commercial vehicle industry continues to move in the direction of improving brake thermal efficiency while meeting more stringent diesel engine emission requirements. This study focused on demonstrating future emissions by using an exhaust burner upstream of a conventional aftertreatment system. This work highlights system results over the low load cycle (LLC) and many other pertinent cycles (Beverage Cycle, and Stay Hot Cycle, New York Bus Cycle). These efforts complement previous works showing system performance over the Heavy-Duty FTP and World Harmonized Transient Cycle (WHTC). The exhaust burner is used to raise and maintain the Selective Catalytic Reduction (SCR) catalyst at its optimal temperature over these cycles for efficient NOX reduction. This work showed that tailpipe NOX is significantly improved over these cycles with the exhaust burner.
Technical Paper

Low NOx Emissions Performance after 800,000 Miles Aging Using CDA and an Electric Heater

2024-07-02
2024-01-3011
Engine and aftertreatment solutions have been identified to meet the upcoming ultra-low NOX regulations on heavy duty vehicles in the United States and Europe. These standards will require changes to current conventional aftertreatment systems for dealing with low exhaust temperature scenarios while increasing the useful life of the engine and aftertreatment system. Previous studies have shown feasibility of meeting the US EPA and California Air Resource Board (CARB) requirements. This work includes a 15L diesel engine equipped with cylinder deactivation (CDA) and an aftertreatment system that was fully DAAAC aged to 800,000 miles. The aftertreatment system includes an e-heater (electric heater), light-off Selective Catalytic Reduction (LO-SCR) followed by a primary aftertreatment system containing a DPF and SCR.
Journal Article

Low Ambient Temperature Impact on a Low NOX Demonstration System

2023-04-11
2023-01-0361
In 2020, CARB adopted the low NOX omnibus ruling, which provided revisions to on-road heavy duty engine compliance standards and certification practices. As part of the updates to the regulation, CARB has introduced a new in-use vehicle testing process that broadens the operation modes tested and considers the manufacturer’s intended vehicle application. Compared to the previous method, or the Not-to-Exceed approach, cold start and low ambient temperature provisions were included as part of the updates. The inclusion of low temperature operation requires the OEMs to design a robust engine and aftertreatment package that extends NOX conversion performance. The following work discusses the NOX emissions performance impact in a low temperature ambient environment. The engine and aftertreatment system evaluated was designed to comply with CARB’s low NOX regulations. The cycles tested included the CARB Southern NTE cycle and an FTP-LLC protocol.
Journal Article

CARB Low NOX Stage 3 Program - Final Results and Summary

2021-04-06
2021-01-0589
Despite considerable progress over the last several decades, California continues to face some of the most significant air quality problems in the United States. These continued issues highlight the need for further mobile source NOX reductions to help California and other areas meet ambient air quality targets mandated by the U.S. EPA. Beginning in 2014, the California Air Resources Board (CARB) launched a program aimed at demonstrating technologies that could enable heavy-duty on-highway engines to reach tailpipe NOX levels up to 90% below the current standards, which were implemented in 2010. At the same time, mandated improvements to greenhouse gas emissions (GHG) require that these NOX reductions be achieved without sacrificing fuel consumption and increasing GHG emissions.
X