Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Selective Interrupt and Control: An Open ECU Alternative

2018-04-03
2018-01-0127
To enable the evaluation of off-calibration powertrain operation, a selective interrupt and control (SIC) test capability was developed as part of an EPA evaluation of a 1.6 L EcoBoost® engine. A control and data acquisition device sits between the stock powertrain controller and the engine; the device selectively passes through or modifies control signals while also simulating feedback signals. This paper describes the development process of SIC that enabled a test engineer to command off-calibration setpoints for intake and exhaust cam phasing as well as ignition timing without the need for an open ECU duplicating the stock calibration. Results are presented demonstrating the impact of ignition timing and cam phasing on engine efficiency. When coupled with combustion analysis and crank-domain data acquisition, this test configuration provides a complete picture of powertrain performance.
Technical Paper

Late Intake Valve Closing with Throttle Control at Light Loads for a Lean-Burn Natural Gas Engine

1999-10-25
1999-01-3485
Heavy-duty natural gas engines available today are typically derived from diesel engines. The biggest discrepancy in thermal efficiency between a natural gas engine and its diesel counterpart comes at low loads. This is particularly true for a lean-burn throttle-controlled refuse hauler. Field data shows that a refuse hauler operates at low speeds for the majority of the time, averaging between 3 to 7 miles per hour. As a result, many developers focus primarily on the improvement of thermal efficiency at light loads and low speeds. One way to improve efficiency at light loads is through the use of a late intake valve closing (IVC) technique. With the increase in electronic and hydraulic control technologies, the potential benefits of late IVC with unthrottled control are realizable in production engines.
Technical Paper

Effect of Reduced Boost Air Temperature on Knock Limited Brake Mean Effective Pressure (BMEP)

2001-09-24
2001-01-3682
The effect of low temperature intake air on the knock limited brake mean effective pressure (BMEP) in a spark ignited natural gas engine is described in this paper. This work was conducted to demonstrate the feasibility of using the vaporization of liquefied natural gas (LNG) to reduce the intake air temperature of engines operating on LNG fuel. The effect on steady-state emissions and transient response are also reported. Three different intake air temperatures were tested and evaluated as to their impact upon engine performance and gaseous emissions output. The results of these tests are as follows. The reduced intake air temperature allowed for a 30.7% (501 kPa) increase in the knock-limited BMEP (comparing the 10°C (50°F) intake air results with the 54.4°C (130°F) results). Exhaust emissions were recorded at constant BMEP for varying intake air temperatures.
Technical Paper

Detailed Characterization of Criteria Pollutant Emissions from D-EGR® Light Duty Vehicle

2016-04-05
2016-01-1006
In this study, the criteria pollutant emissions from a light duty vehicle equipped with Dedicated EGR® technology were compared with emissions from an identical production GDI vehicle without externally cooled EGR. In addition to the comparison of criteria pollutant mass emissions, an analysis of the gaseous and particulate chemistry was conducted to understand how the change in combustion system affects the optimal aftertreatment control system. Hydrocarbon emissions from the vehicle were analyzed usin g a variety of methods to quantify over 200 compounds ranging in HC chain length from C1 to C12. The particulate emissions were also characterized to quantify particulate mass and number. Gaseous and particulate emissions were sampled and analyzed from both vehicles operating on the FTP-75, HWFET, US06, and WLTP drive cycles at the engine outlet location.
Journal Article

Dedicated EGR Vehicle Demonstration

2017-03-28
2017-01-0648
Dedicated EGR (D-EGR) is an EGR strategy that uses in-cylinder reformation to improve fuel economy and reduce emissions. The entire exhaust of a sub-group of power cylinders (dedicated cylinders) is routed directly into the intake. These cylinders are run fuel-rich, producing H2 and CO (reformate), with the potential to improve combustion stability, knock tolerance and burn duration. A 2.0 L turbocharged D-EGR engine was packaged into a 2012 Buick Regal and evaluated on drive cycle performance. City and highway fuel consumption were reduced by 13% and 9%, respectively. NOx + NMOG were 31 mg/mile, well below the Tier 2 Bin 5 limit and just outside the Tier 3 Bin 30 limit (30 mg/mile).
Technical Paper

CNG Compositions in Texas and the Effects of Composition on Emissions, Fuel Economy, and Driveability of NGVs

1996-10-01
962097
A survey of the CNG compositions within NGV driving range of Houston was performed. It was found that the statistics for the Texas CNGs were very similar to those from a previous national survey Based upon the present survey results, two extremes of CNG composition were chosen for a study of the effects of composition on emissions, fuel economy, and driveability. Two other CNG compositions were also included to provide for comparisons with the recently completed Auto/Oil Air Quality Improvement Research Program (AQIRP) and to extend the AQIRP database. One of the vehicles used in the AQIRP study was also used in the present investigation. Correlations were investigated for the relationships between the CNG composition and tailpipe emissions, fuel economy, and driveability.
Technical Paper

Achieving Fast Catalyst Light-Off from a Heavy-Duty Stoichiometric Natural Gas Engine Capable of 0.02 g/bhp-hr NOX Emissions

2018-04-03
2018-01-1136
Recently conducted work has been funded by the California Air Resources Board (CARB) to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions for heavy-duty on-road engines. In addition to NOX emissions, greenhouse gas (GHG), CO2 and methane emissions regulations from heavy-duty engines are also becoming more stringent. To achieve low cold-start NOX and methane emissions, the exhaust aftertreatment must be brought up to temperature quickly while keeping proper air-fuel ratio control; however, a balance between catalyst light-off and fuel penalty must be addressed to meet future CO2 emissions regulations. This paper details the work executed to improve catalyst light-off for a natural gas engine with a close-coupled and an underfloor three-way-catalyst while meeting an FTP NOX emission target of 0.02 g/bhp-hr and minimizing any fuel penalty.
Technical Paper

Achieving 0.02 g/bhp-hr NOx Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst

2017-03-28
2017-01-0957
It is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards of 0.20 g/bhp-hr, the National Ambient Air Quality Standards (NAAQS) requirements for ambient ozone will not be met. It is expected that further reductions in NOX emissions from the heavy-duty fleet will be required to achieve compliance with the ambient ozone requirement. To study the feasibility of further reductions, the California Air Resources Board (CARB) funded a research program to demonstrate the potential to reach 0.02 g/bhp-hr NOX emissions. This paper details the work executed to achieve this goal on the heavy-duty Federal Test Procedure (FTP) with a heavy-duty natural gas engine equipped with a three-way catalyst. A Cummins ISX-12G natural gas engine was modified and coupled with an advanced catalyst system.
X