Refine Your Search

null

Search Results

Viewing 1 to 13 of 13
Journal Article

The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines

2017-09-04
2017-24-0061
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions [1]. In this study, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressive pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects.
Technical Paper

On the Use of Thermodynamic Modeling for Predicting Cycle-to-Cycle Variations in a SI Engine under Lean Conditions

2005-10-24
2005-01-3802
We propose a procedure by which a two-zone thermodynamic model combined with a flame propagation sub-model can used for predicting the cycle-to-cycle variations of combustion in a spark ignition (SI) engine operating at very lean and high exhaust gas residual conditions. Under such conditions, the variations have been shown to consist of both deterministic and stochastic components. The deterministic component is inherent to the non-linear nature of the combustion efficiency variation with equivalence ratio (or dilution level) while the stochastic component results primarily from noise associated with the parameters (that are inevitable in a mechanical system) that affect combustion. Since the overall dynamics of the instabilities are driven by the low order deterministic component, if a model can be made to capture this component, the stochastic component is easily modeled by adding noise to the parameters.
Technical Paper

Investigating Potential Light-duty Efficiency Improvements through Simulation of Turbo-compounding and Waste-heat Recovery Systems

2010-10-25
2010-01-2209
Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

Impact of Multimode Range and Location on Urban Fuel Economy on a Light-Duty Spark-Ignition Based Powertrain Using Vehicle System Simulations

2020-04-14
2020-01-1018
Multimode engine operation uses two or more combustion modes to maximize engine efficiency across the operational range of a vehicle to achieve higher overall vehicle fuel economy than is possible with a single combustion mode. More specifically for this study, multimode solutions are explored that make use of boosted SI under high load operation and other advanced combustion modes such as advanced compression ignition (ACI) under part-load conditions to enable additional engine efficiency improvements across a broader range of the engine operating map. ACI combustion has well-documented potential to improve efficiency and emissions under part-load operation but poses challenges that limit full engine speed-load range. This study investigates the potential impact of ACI operational range on simulated fuel economy to help focus research on areas with the most opportunity for improving fuel economy.
Technical Paper

Impact of Delayed Spark Restrike on the Dynamics of Cyclic Variability in Dilute SI Combustion

2016-04-05
2016-01-0691
Spark-ignition (SI) engines can derive substantial efficiency gains from operation at high dilution levels, but sufficiently high-dilution operation increases the occurrence of misfires and partial burns, which induce higher levels of cyclic-variability in engine operation. This variability has been shown to have both stochastic and deterministic components, with residual fraction impacts on charge composition being the major source of the deterministic component through its non-linear effect on ignition and flame propagation characteristics. This deterministic coupling between cycles offers potential for next-cycle control approaches to allow operation near the edge of stability. This paper aims to understand the effect of spark strategies, specifically the use of a second spark (restrike) after the main spark, on the deterministic coupling between engine cycles by operating at high dilution levels using both excess air (i.e. lean combustion) and EGR.
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

2013-04-08
2013-01-0289
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
Journal Article

Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

2016-04-05
2016-01-0715
Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, isooctane, toluene, and ethanol. Laminar flame speeds for these mixtures, which are calculated using two different methods (an energy fraction mixing rule and a detailed kinetic simulation), span a range of about 6 cm/s. A nominal load of 350 kPa IMEPg at 2000 rpm is maintained with constant fueling and varying CA50 from 8-20 CAD aTDCf. EGR is increased until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds have increased EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned.
Technical Paper

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2012-04-16
2012-01-0376
This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI).
Journal Article

EGR Dilution and Fuel Property Effects on High-Efficiency Spark-Ignition Flames

2021-04-06
2021-01-0483
Modern spark ignition internal combustion engines rely on fast combustion rates and high dilution to achieve high brake thermal efficiencies. To accomplish this, new engine designs have moved towards increased tumble ratios and stroke-to-bore ratios. Increased tumble ratios correlate positively with increases in turbulent kinetic energy and improved fuel and residual gas mixing, all of which favor faster and more efficient combustion. Longer stroke-to-bore ratios allow higher geometric compression ratios and use of late intake valve closing to control peak compression pressures and temperatures. The addition of dilution to improve efficiency is limited by the resulting increase in combustion instabilities manifested by cycle-to-cycle variability.
Technical Paper

Detailed Chemical Kinetic Modeling of Iso-octane SI-HCCI Transition

2010-04-12
2010-01-1087
We describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (SI) combustion to homogenous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study we assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scenario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. We find that the model captures many of the important experimental trends, including stable SI combustion at low EGR (~0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR (~0.75).
Journal Article

Analysis of Cyclic Variability of Heat Release for High-EGR GDI Engine Operation with Observations on Implications for Effective Control

2013-04-08
2013-01-0270
Operation of spark-ignition (SI) engines with high levels of charge dilution through exhaust gas recirculation (EGR) achieves significant engine efficiency gains while maintaining stoichiometric operation for compatibility with three-way catalysts. Dilution levels, however, are limited by cyclic variability - including significant numbers of misfires - that becomes more pronounced with increasing dilution. This variability has been shown to have both stochastic and deterministic components. Stochastic effects include turbulence, mixing variations, and the like, while the deterministic effect is primarily due to the nonlinear dependence of flame propagation rates and ignition characteristics on the charge composition, which is influenced by the composition of residual gases from prior cycles.
Technical Paper

Achieving Diesel-Like Efficiency in a High Stroke-to-Bore Ratio DISI Engine under Stoichiometric Operation

2020-04-14
2020-01-0293
This work explores pathways to achieve diesel-like, high-efficiency combustion with stoichiometric 3-way catalyst compatible spark ignition (SI). A high stroke-to-bore engine design (1.5:1) with cooled exhaust gas recirculation (EGR) and high compression ratio (rc) was used to improve engine efficiency by up to 30% compared with a production turbocharged gasoline direct injection spark ignition engine. To achieve efficiency improvements, engine experiments were coupled with computational fluid dynamics simulations to guide and explain experimental trends between the original engine and the high stroke-to-bore ratio design (1.5:1). The effects of EGR and late intake valve closing (IVC) and fuel characteristics are investigated through their effects on knock mitigation. Direct injection of 91 RON E10 gasoline, 99 RON E0 gasoline, and liquified petroleum gas (i.e., propane/autogas) were evaluated with geometric rc ranging from 13.3:1 to 16.8:1.
X