Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

69 Development of Gear Train Behavioral Analysis Technologies Considering Non-linear Elements

2002-10-29
2002-32-1838
A numerical calculation method, which enables the analysis of gear train behavior including non-linear elements in a motorcycle engine, was established. During the modeling process, it was confirmed that factors such as bearing distortion, radial bearing clearance and elastic deformation of a tooth flank could not be neglected because they effect the rotation behavior. To keep a high accuracy, those factors were included in the simulation model, after they were converted into the rigidity elements along the rotational direction of each gear model. In addition, the model was combined with a crankshaft behavior calculation model for a driving and excitation source. A time domain numerical integration method was used to perform the transient response simulation across a wide range of engine speeds. A jump phenomenon of response behavior of the driven gear was predicted that is a characteristic of non-linear response. The phenomenon was also observed in a physical test.
Technical Paper

A Development of Measurement System for Piston Ring Sliding Surface Pressure

2018-10-30
2018-32-0022
The piston rings, the engine sliding parts, are required to further contribute on mechanical loss reduction in order to improve fuel efficiency. However, many cases of the abnormal combustion due to oil upward flow, as well as the increase in oil consumption have been reported. Therefore, elucidation of the mechanism of those phenomena is still an urgent task. It is widely known that the distribution of the sliding face pressure in between the piston ring and the cylinder bore largely influence the oil flow via the sliding face of the piston ring. However, there are many unknown aspects in this field. Therefore, verification of the sliding face pressure during the actual operation is necessary in order to elucidate the mechanism of oil consumption. The thin-film sensor, since it has little influence on shape, is widely used as a measurement method of the sliding face pressure between two different faces, however this method has never been applied to the piston ring in the past.
Technical Paper

A Development of a Light Weight and High Performance Aluminum Radiator

1992-02-01
920549
This paper introduces a new type of aluminum radiator that has been developed with the objective of high performance and light weight. Aluminum radiators have recently been replacing copper radiators because of their light weight, but the heat rejection of such conventional alminum radiators does not exceed that of copper radiators. Authors established the aluminum radiator not only being light weight but also having high performance through the following approaches. (1) Optimization of radiator core module. (2) Thickness reduction of tube and fin. (3) Development of aluminum alloys with improved corrosion resistance for tubes and fins. As a result, a new type single-row aluminum radiator has achieved 7% higher rejection at 50% lighter weight than those of copper double-row radiator.
Technical Paper

A High Power, Wide Torque Range, Efficient Engine with a Newly Developed Variablea-Valve-Lift and -Timing Mechanism

1989-02-01
890675
A variable valving system was developed. This system has two cam profiles, one for low speed and one for high speed. A 1.2-litre DOHC experimental engine using this system was made and mounted in the body of a 2-1itre class passenger car. Test results of this car were compared to those of the same car with its original engine. The test car showed better results in every area of driving performance, in mode-fuel-econorny and in noise tests. This paper presents the mechanism, operation and test results of this variable valving system, the 1.2-litre experimental engine and this passenger car. THE PERFORMANCE AND EFFICIENCY of the passenger car gasoline engine have been greatly improved: primarily as a response to exhaust-gas emission regulations and the oil crises. These improvements have been achieved mainly through the development of control technologies to optimize many parameters such as ignition timing and air fuel ratio precisely according to driving conditions.
Technical Paper

A New Variable Valve Engine Applying Shuttle Cam Mechanism

1992-02-01
920450
Variable-valve-actuation mechanism is considered to be one of the most suitable solutions to realize the compatibility between higher power output and performances in the practical speed range. A new variable-valve-actuation mechanism named “Shuttle Cam” was designed and studied. In this mechanism which was applied to a conventional motorcycle engine with rocker arms and gear-train-driven valve system, the cam gears move along the idler gear. And cam shafts simultaneously slide along the rocker-arm slipper surfaces which are concentric with the idler gear. Consequently valve lift varies continuously in accordance with the alteration in the rocker-arm lever ratio and the cam phasing changes simultaneously in accordance with the cam gear rotation. Result of the experiments has confirmed that the mechanism functions accurately even at high speeds up to 10,000 rpm and some improvements were achieved in power output, fuel consumption, idling quality, and exhaust-noise level.
Technical Paper

A Quick Warm-Up System During Engine Start-Up Period Using Adaptive Control of Intake Air and Ignition Timing

2000-03-06
2000-01-0551
Early activation of catalyst by quickly raising the temperature of the catalyst is effective in reducing exhaust gas during cold starts. One such technique of early activation of the catalyst by raising the exhaust temperature through substantial retardation of the ignition timing is well known. The present research focuses on the realization of quick warm-up of the catalyst by using a method in which the engine is fed with a large volume of air by feedforward control and the engine speed is controlled by retarding the ignition timing. In addition, an intake air flow control method that comprises a flow rate correction using an adaptive sliding mode controller and learning of flow rate correction coefficient has been devised to prevent control degradation because of variation in the flow rate or aging of the air device. The paper describes the methods and techniques involed in the implementation of a quick warm-up system with improved adaptability.
Technical Paper

A Statistical Tire Model Concept - Applications to Vehicle Development

2015-04-14
2015-01-1578
The tires are one of the most important parts of the vehicle chassis, as they significantly influence aspects such as vehicle's directional stability, braking performance, ride comfort, NVH, and fuel consumption. The tires are also a part whose size affects the vehicle's essential specifications such as wheelbase and track width. The size of the tires should therefore be determined in the initial stage of vehicle development, taking into account whether the size allows the vehicle to achieve the targeted overall performance. In estimations of vehicle performance, computer simulation plays more of an important role, and simulated tire models are designed to reproduce the measured tire characteristics of existing tires. But to estimate the chassis performance with various tire sizes or with tires of uncommon sizes, the prevailing modeling approach, “individual models for individual tires,” would not function well because of limited ability to expand tire models to unfamiliar sizes.
Journal Article

A Study of Controlled Auto-Ignition in Small Natural Gas Engines

2013-10-15
2013-32-9098
Research has been conducted on Controlled Auto-Ignition (CAI) engine with natural gas. CAI engine has the potential to be highly efficient and to produce low emissions. CAI engine is potentially applicable to automobile engine. However due to narrow operating range, CAI engine for automobile engine which require various speed and load in real world operation is still remaining at research level. In comparison some natural gas engines for electricity generation only require continuous operation at constant load. There is possibility of efficiency enhancement by CAI combustion which is running same speed at constant load. Since natural gas is primary consisting of methane (CH4), high auto-ignition temperature is required to occur stable auto-ignition. Usually additional intake heat required to keep stable auto-ignition. To keep high compression temperature, single cylinder natural gas engine with high compression ratio (CR=26) was constructed.
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Technical Paper

A Study of Vehicle Equipped with Non-Throttling S.I. Engine with Early Intake Valve Closing Mechanism

1993-03-01
930820
To enable non-throttling operation of gasoline S.I. engine, we have manufactured engines equipped with a newly developed Hydraulic Variable-valve Train (HVT), which can vary its intake-valve closing-timing freely. The air-intake control ability of HVT engine is equivalent to conventional throttling engines. Combustion becomes unstable, however, under non-throttling operation at idling. For the countermeasure, newly designed combustion chamber has been developed. The reduction of pumping loss by the HVT depends on engine speed rather than load, and amounts to about 80 % maximum. A conventional engine-management system is not applicable for non-throttling operation. Therefore, new management system has been developed for load control.
Technical Paper

A Study on Developing MPI Hydrogen ICE over 2MPa BMEP for Medium Duty Vehicles

2023-09-29
2023-32-0037
Hydrogen ICE can achieve carbon neutrality and is adaptable to medium and heavy-duty vehicles, for which electricity is not always a viable option. It can also be developed using high-quality conventional diesel/gasoline engine technology. Furthermore, it allows for the conversion of existing engines to hydrogen ICE, making it highly marketable. The reliability and durability of MPI hydrogen ICE is better than that of DI, and MPI has an advantage over DI in terms of cruising range because the low-pressure injection of hydrogen reduces the remaining hydrogen in the tank. Improving MPI output is, however, an important subject, and achieving this requires suppressing abnormal combustion such as pre-ignition. In this study, an inline four-cylinder 5L turbo-charged diesel engine was converted to a hydrogen engine. Hydrogen injectors were installed in the intake ports and spark plugs were installed instead of diesel fuel injectors.
Technical Paper

A Study on Effects of Low Viscosity Engine Oil and MoDTC on Piston Friction Losses in a DI Diesel Engine

2015-09-01
2015-01-2044
The reduction of friction losses is a subject of central importance in a diesel engine. The piston frictions of low viscosity engine oil and molybdenum dialkyl dithiocarbamate (MoDTC) have been measured by floating liner method. It was found that the low viscosity engine oil lower than 5W-30 is not effective against the reduction of friction mean effective pressure (FMEP) related to the fuel consumption. MoDTC showed a good performance against the reduction of FMEP. In the friction measurement points, the reduction ratio of 10W-30 with MoDTC to 10W-30 was greater than that of 5W-30 to 10W-30.
Technical Paper

A Study on Shockless Combustion Change Control of Direct Injection Gasoline Engine

2004-10-25
2004-01-2940
A direct injection gasoline engine featuring a center-injection method that incorporates a high-pressure injector at the top center of the combustion chamber, has been developed. The engine is characterized by a significantly improved fuel economy and emissions performance as the result of the application of direct-injection stratified charge, DISC, which is one of the main features of the direct-injection engine. This paper describes a study on a change control method for switching between DISC and homogeneous charge combustion. The two forms of combustion employed in the new direct-injection engine differ in terms of combustion limits in relation to recirculated exhaust gas and air-fuel ratio. This causes the torque difference which is a specific issue in direct injection gasoline engines. The authors attempted to cope with the issue from the viewpoints of misfire prevention and fuel amount restriction in accordance with the torque required.
Technical Paper

A Study on the Feature of Several Types of Floating Liner Devices for Piston Friction Measurement

2019-04-02
2019-01-0177
The friction reduction of a piston/piston-ring assembly is effective for fuel economy of an engine, and a friction measurement method is required for developing low friction pistons, piston-rings and lubricants. Most suitable method for friction measurement for piston assemblies is “floating liner method”. It has load sensors between a floating cylinder liner and cylinder block, and the sensors can detect friction force acting on the liner. Many apparatuses using floating liner method are developed. They are roughly divided to two categories. In one of them, floating liner is supported by load-washers which axis is set parallel to the center line of the cylinder liner. In another type, floating liner is supported by three-component force sensors installed on the side face of the cylinder. In this paper, five types of floating liner devices were compared.
Technical Paper

A Study on the Function of Oil Drain Holes in the Oil Ring Groove of a Piston and Their Effect on Oil Consumption

2019-12-19
2019-01-2360
Clarifying the mechanism of oil transporting upward at around an oil ring of a piston is necessary for calculating engine oil consumption. This study aimed to clarify the function of oil drain holes in the oil ring groove of a piston. The effect of the oil drain holes in the groove on oil consumption was investigated. Also the pressure balance around the oil ring was measured. It was found that the drain holes in the groove lowered oil consumption. It was assumed that lower pressure in the groove with the drain holes caused less oil flow into the third land.
Technical Paper

A Vibration Transfer Reduction Technique, Making Use of the Directivity of the Force Transmitted from Road Surface to Tire

2000-03-06
2000-01-0096
While there has been an empirical rule telling suspension designers that a slight rearward inclination of the wheel travel locus could improve ride harshness performance, there has not been any quantitative proof on it, to the extent of authors' knowledge. The authors planned to analyze the phenomenon by quantitatively measuring the force transmission via suspension, to find out that the amplitude of longitudinal force transmission to the sprung mass changes significantly depending on the above inclination angle. Further investigation has lead to a conclusion that the force transmission from ground to tire has a sharp directivity. And that the relationship between this direction and the direction of wheel travel is a dominant factor, which decides the magnitude of longitudinal force transmission to the sprung mass. In order to make use of the finding, the optimal wheel center locus inclination in side view has been studied, to minimize the longitudinal force transmission.
Journal Article

A study of Measurement for Oil Film at the Bearing of the Small End of Diesel Engine Connecting Rod

2019-12-19
2019-01-2332
Downsizing and slowing down of engine speed reduce mechanical losses and improve fuel economy. However, they exacerbate lubrication condition. The oil film thickness of the bearing of the small end of the connecting rod, which was one of the sliding surfaces with the severest lubrication condition in a diesel engine, was measured in this study to clarify the lubrication condition. Optical fibers were embedded in the bearing, and oil film was measured by means of the laser induced fluorescence method. It was found that oil film thickness was affected combustion gas pressure and distortion of the piston pin.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
X