Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wind Noise and Drag Optimization Test Method for Sail-Mounted Exterior Mirrors

2003-05-05
2003-01-1702
An L18 Taguchi-style Design of Experiments (DOE) with eight factors was used to optimize exterior mirrors for wind noise and drag. Eighteen mirror properties were constructed and tested on a full size greenhouse buck at the Lockheed low-speed wind tunnel in Marietta, GA. Buck interior sound data and drag measurements were taken at 80 MPH wind speed (0° yaw angle). Key wind noise parameters were the fore/aft length of mirror housing and the plan view angle of the mirror housing's inboard surface. Key drag parameters were the fore/aft length of the mirror housing, the cross-section shape of the mirror pedestal, and the angle of the pedestal (relative to the wind).
Technical Paper

Wear of D2 Tool Steel Dies during Trimming DP980-type Advanced High Strength Steel (AHSS) for Automotive Parts

2017-03-28
2017-01-1706
Automobile body panels made from advanced high strength steel (AHSS) provide high strength-to-mass ratio and thus AHSS are important for automotive light-weighting strategy. However, in order to increase their use, the significant wear damage that AHSS sheets cause to the trim dies should be reduced. The wear of dies has undesirable consequences including deterioration of trimmed parts' edges. In this research, die wear measurement techniques that consisted of white-light optical interferometry methods supported by large depth-of-field optical microscopy were developed. 1.4 mm-thick DP980-type AHSS sheets were trimmed using dies made from AISI D2 steel. A clearance of 10% of the thickness of the sheets was maintained between the upper and lower dies. The wear of the upper and lower dies was evaluated and material abrasion and chipping were identified as the main damage features at the trim edges.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Technical Paper

Wake Structures of Rectangular Bodies with Radiused Edges Near a Plane Surface

1999-03-01
1999-01-0648
Almost all published results of wake measurements for ground vehicles or similar shapes have included very limited information on streamwise development of wake structures. This is typically a result of the fact that the wake measurements have been conducted as parts of particular vehicle development efforts. So the focus has been on the incremental changes in the wakes associated with alternative geometries or buildup of various parts. The objectives are typically reached by limiting the surveys to a single streamwise plane. The present study, by contrast, is a study of wake development for a series of relatively simple rectangular shapes with radiused edges with a systematic variation in the ratio of height to width or “Aspect Ratio”.
Technical Paper

Virtual Methods for Water Management in Automotive Structures

2023-04-11
2023-01-0933
The requirements of the automotive industry move along due to product competitiveness and this contributes to increase complexity in the requirements for evaluation. Simulation tools play a key role thanks to their versatility and multiple physical phenomena that can be represented. The axis of analysis for this paper is the problem of the interaction of airflow and water flow in the cowl/plenum/leaf screen components. Airflow is represented by HVAC system operating and water flow by the vehicle in torrential rain. Initially, one simulation is evaluated at a time, in one side, the airflow entering the HVAC system in which the amount of air entering is monitored and pressure drop, on the other, the water simulation on the vehicle, both using a Lagrangian CFD model (using with tools such as STAR CCM+® or Ansys Fluent®) Due to this, a CFD methodology was developed to evaluate the interaction of air and water flow.
Technical Paper

Verification and Test Methodologies for Structural Aluminum Repair

2003-03-03
2003-01-0570
The increasing use of aluminum in the design of Body In White (BIW) structures created the need to develop and verify repair methodologies specific to this substrate. Over the past century, steel has been used as the primary material in the production of automotive BIW systems. While repair methods and techniques in steel have been evolving for decades, aluminum structural repair requires special attention for such common practices as welding, mechanical fastening, and the use of adhesives. This paper outlines some of the advanced verification and testing methodologies used to develop collision repair procedures for the aluminum 2003 Jaguar XJ sedan. It includes the identification of potential failure modes found in production and customer applications, the formulation of testing methodologies, CAE verification testing and component subsystem prove-out. The objective of the testing was to develop repair methodologies that meet or exceed production system performance characteristics.
Technical Paper

Vehicle Response Comparison to Tire Tread Separations Induced by Circumferentially Cut and Distressed Tires

2007-04-16
2007-01-0733
In this study, tests were performed with modified tires at the right rear location on a solid rear axle sport utility vehicle to compare the vehicle inputs from both: (1) tire tread belt detachments staged by circumferentially cut tires, and (2) a tire tread detachment staged by distressing a tire in a laboratory environment. The forces and moments that transfer through the road wheel were measured at the right and left rear wheel locations using wheel force transducers; displacements were measured between the rear axle and the frame at the shock absorber mounting locations, ride height displacements were measured at the four corners of the vehicle, and accelerations were measured on the rear axle. Onboard vehicle accelerations and velocities were measured as well. The data shows that the tire tread belt detachments prepared by circumferentially cut tires and distressed tires have similar inputs to the vehicle.
Technical Paper

Validation of Non-linear Load-Controlled CAE Analyses of Oil-Canning Tests of Hood and Door Assemblies

2003-03-03
2003-01-0603
Two finite element methodologies for simulating oil-canning tests on closure assemblies are presented. Reflecting the experimental conditions, the simulation methodologies assume load-controlled situations. One methodology uses an implicit finite-element code, namely ABAQUS®, and the other uses an explicit code, LS-DYNA®. It is shown that load-displacement behavior predicted by both the implicit and explicit codes agree well with experimental observations of oil-canning in a hood assembly. The small residual dent depth predictions are in line with experimental observations. The method using the implicit code, however, yields lower residual dent depth than that using the explicit code. Because the absolute values of the residual dent depths are small in the cases examined, more work is needed, using examples involving larger residual dent depth, to clearly distinguish between the two procedures.
Technical Paper

Use of Raman Spectroscopy to Identify Automotive Polymers in Recycling Operations

2000-03-06
2000-01-0739
To support its recycling efforts, Ford Motor Company is using a Raman based instrument, the RP-1, co-developed with SpectraCode Inc. to identify unknown polymeric parts. Our recycling initiative involves detailed dismantling of our vehicles into individual parts, calculating the percentage recyclability and making recommendations for the future use of recycled polymers. While Ford has voluntarily adopted the SAE J1344 marking protocol for identifying part material composition, a large number of unmarked parts still exist and require identification. This identification is being done with the help of RP-1. To facilitate this identification, we have generated an accurate reference library of Raman spectra for comparison to those of unknown materials. This paper will describe the techniques that were used to develop and refine the RP-1 reference library to identify automotive polymers, especially black/dark plastics.
Technical Paper

Use of Body Mount Stiffness and Damping In CAE Crash Modeling

2000-03-06
2000-01-0120
This paper reports a study of the dynamic characteristics of body mounts in body on frame vehicles and their effects on structural and occupant CAE results. The body mount stiffness and damping are computed from spring-damper models and component test results. The model parameters are converted to those used in the full vehicle structural model to simulate the vehicle crash performance. An effective body mount in a CAE crash model requires a set of coordinated damping and stiffness to transfer the frame pulse to the body. The ability of the pulse transfer, defined as transient transmissibility[1]1, is crucial in the early part of the crash pulse prediction using a structural model such as Radioss[2]. Traditionally, CAE users input into the model the force-deflection data of the body mount obtained from the component and/or full vehicle tests. In this practice, the body mount in the CAE model is essentially represented by a spring with the prescribed force-deflection data.
Technical Paper

Update on the Developments of the SAE J2334 Laboratory Cyclic Corrosion Test

2003-03-03
2003-01-1234
The Corrosion Task Force of the Automotive/Steel Partnership has developed the SAE J2334 cyclic laboratory test for evaluating the cosmetic corrosion resistance of auto body steel sheet. [Ref. 1] Since the publishing of this test in 1997, further work has improved the precision of J2334. In this paper, the results of this work along with the revisions to the J2334 test will be discussed.
Technical Paper

Understanding Through-Thickness Integration in Springback Simulation

2006-04-03
2006-01-0147
The “adequate” number of integration points (NIP) required to achieve accurate springback simulation results is studied in this paper in an effort to clarify confusions reported in the literature and shed light on the origin of the confusion. A bending-under-tension model is adopted where springback solution can be obtained with analytical integration through metal thickness. Numerical integrations are then performed and compared with analytical solution to assess associated errors. A crucial distinction is made in the paper that, the model can be posed either as a displacement-value problem where both tension strain and bending radius are prescribed or as a mixed-value problem where the tension force and bending radius are prescribed. Although they are physically equivalent due to the uniqueness of solution, the numerical solutions are different. The associated errors in springback respond differently to the number of integration points employed.
Technical Paper

Transient Dynamic Analysis of Suspension System for Component Fatigue Life Estimation

2007-04-16
2007-01-0638
For suspension systems, fatigue and strength simulations are accomplished mostly at the component level. However, the selection of loading conditions and replication of boundary conditions at the component level may be difficult. A system level simulation eliminates most of the discrepancy between component level and vehicle level environment yielding realistic results. Further advantage of system level simulation is that the boundary conditions are limited to suspension mounting points at body or frame and the loading is limited to wheel-end or tire patch loading. This provides for a robust set of boundary constraints that are known and repeatable, and loads that are simpler and of relatively higher accuracy. Here, the nonlinear transient dynamic behavior of a suspension system along with its frame and mounting was simulated using a multibody finite element analysis (FEA).
Journal Article

Thermal Response of Aluminum Engine Block During Thermal Spraying of Bores: Comparison of FEA and Thermocouple Results

2017-03-28
2017-01-0451
Thermally sprayed coatings have used in place of iron bore liners in recent aluminum engine blocks. The coatings are steel-based, and are sprayed on the bore wall in the liquid phase. The thermal response of the block structure determines how rapidly coatings can be applied and thus the investment and floor space required for the operation. It is critical not to overheat the block to prevent dimensional errors, metallurgical damage, and thermal stress cracks. This paper describes an innovative finite element procedure for estimating both the substrate temperature and residual stresses in the coating for the thermal spray process. Thin layers of metal at a specified temperature, corresponding to the layers deposited in successive thermal spray torch passes, are applied to the substrate model, generating a heat flux into the block. The thickness, temperature, and application speed of the layers can be varied to simulate different coating cycles.
Technical Paper

Thermal Fatigue Analysis of Cast Aluminum Cylinder Heads

2002-03-04
2002-01-0657
Thermal fatigue presents a new challenge in cast aluminum engine design. Accurate thermomechanical stress analysis and reliable failure criterion are the keys to a successful life prediction. It is shown that the material stress and strain behavior of cast aluminum is strongly temperature and strain rate sensitive. A unified viscoplasticity constitutive relation is thus proposed to simultaneously describe the plasticity and creep of cast aluminum components deforming at high temperatures. A fatigue failure criterion based on a damage accumulation model is introduced. Damages due to mechanical fatigue, environmental impact and creep are accounted for. The material stress and strain model and thermal fatigue model are shown to be effective in accurately capturing features of thermal fatigue by simulating a component thermal fatigue test using 3D FEA with ABAQUS and comparing the results with measured data.
Technical Paper

The Use of Numerical Simulations to Perform Engineering Calculations of Window Defogging

2005-05-10
2005-01-2054
Two simple models for the calculation of window defogging have been developed. One uses a lumped system analysis to compute the evaporation of the liquid layer, while the other uses a transient, one dimensional conduction analysis. Both use Sherwood numbers and Nusselt numbers at the liquid air interface that are calculated via a computer simulation using FLUENT. The FLUENT simulations show that steady state Sherwood and Nusselt numbers are just as valid as those calculated from a transient simulation. Results are presented in terms of evaporation rates and liquid layer decrease with time.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

The Relative Effect of Paint Film Thickness on Bimetallic and Crevice Corrosion

1986-02-01
860109
The proliferation of Unibody construction, for vehicle weight reduction, and the expanded use of precoated steel, for improvement in outer body rust-through protection, has significantly increased the number of bimetallic and crevice unions on U.S. manufactured vehicles. Cyclic corrosion and proving ground testing has shown that these unions are highly active electrochemically, resulting in extensive anodic corrosion and cathodic de-lamination of the paint film. This work examines the individual contribution of each layer of the applied protective coatings package, with respect to applied film thickness, to the reduction of permeation by water, oxygen, and NaCl and resultant corrosion.
Technical Paper

The P2000 Body Structure

1998-09-29
982405
The objective of the P2000 body structure design was to provide a body structure with 50% of the mass of current mid-size production vehicles while maintaining all the safety, durability, NVH and other functional attributes. In addition, the design was to be consistent with the PNGV affordability objectives and high volume production by 2005. This paper describes the P2000 body structure including the structural philosophy, project constraints on the design, manufacturing processes, supporting analyses, assembly processes and unique material and design concepts which resulted in the 50% weight reduction from comparable production vehicles.
X