Refine Your Search

Topic

Author

Search Results

Technical Paper

A Continuum Design Sensitivity Analysis of Vehicle Aggregates for Refined NVH Performance

2021-09-22
2021-26-0294
Transmission of vibration and noise to the occupants and especially driver contributes significantly to the quality perception of the motor vehicle and eventually, it affects the overall ride comfort. These forces mainly reach to customer through tactile locations, i.e. floor, gearshift lever, steering wheel and seat. Showroom/Parking customer drive pattern of a vehicle evinces the steering system and driver’s seat rail vibration as strikingly linked aspect to evaluate human comfort [1]. This paper deals with the study of vibration at steering wheel and seat affecting human comfort at engine idle rpm with AC ON and OFF condition for passenger vehicles. The transmissibility of engine and radiator induced vibrations has been investigated with respect to modal alignment of steering and seat system.
Technical Paper

A Method To Evaluate Passenger Thermal Comfort In Automobile Air Conditioning Systems

2017-01-10
2017-26-0150
In present day passenger cars, Mobile Air Conditioning (MAC) system is one of the essential features due to rise in overall ambient temperatures and comfort expectation of customers. During the development of MAC system, the focus is on cooling capacity of system for maintaining in-cabin temperatures. However, parameters like solar radiation, air velocities at occupant, relative humidity, metabolic rate and clothing of occupants also influence occupant’s thermal comfort and normally not considered in design of the MAC system. Subjective method is used to evaluate thermal comfort inside vehicle cabin which depends mainly on human psychology. To better understand the effect and minimize the human psychological factors a large sample of people are required. That process of evaluating the comfort inside the vehicle cabin is not only time consuming but also impractical.
Technical Paper

A Method to Evaluate Impact of Power Steering on Fuel Economy and Optimization

2019-01-09
2019-26-0309
Vehicle manufacturers strive hard to achieve best in class fuel economy. Apart from light weighting of the structures, driveline optimization and reduction of tire rolling resistance, tapping of parasitic losses is also important and helps to optimize the design of auxiliary power consuming systems. One of such system studied in this work is power steering system. The effect of parasitic losses on fuel economy is predominant for small commercial vehicle compare to heavy vehicles. The evaluation of deterioration in the fuel economy due to implementation of power steering system on one of the small commercial vehicle is carried out using multiple virtual simulation tools. Virtual route profile is modelled using longitude, latitude and altitude data captured through GPS and steering duty cycle is mapped in terms of steering rotation angle. A system level model of hydraulic power steering system is developed.
Technical Paper

A New Gen ‘Super-Efficient Condenser’ for Mobile Air Conditioning Application

2023-09-14
2023-28-0043
In the modern era of automotive industry, occupant comfort inside the cabin is a basic need and no more a luxury feature. With increase in number of vehicles, the expectations from customers are also changing. One of the major expectations from real world customers is quick cabin cooling thru all seasons, particularly when the vehicle is hot soaked and being used in summer conditions. Occupant thermal comfort inside the vehicle cabin is provisioned by a mobile air conditioning (MAC) system, which operates on a vapor compression-based cycle using a refrigerant. The main components of a direct expansion (DX) based MAC system are, a compressor, condenser, evaporator, and expansion valve. Conditioned air is circulated inside the cabin using a blower, duct system and air vents. The AC condenser is the most critical component in AC circuit as it rejects heat, thereby providing for a cooling effect inside the cabin.
Technical Paper

Achievement of Superior Cabin Comfort and Maximising Energy Efficiency Using EXV in BEVs

2023-09-14
2023-28-0022
The global and Indian automotive industry is transitioning from use of Internal Combustion Engine (ICE) vehicles towards Battery Electric Vehicles (BEVs). BEV applications with high voltage (HV) battery require optimal thermal management to have a longer life, higher efficiency and to deliver superior year-round performance. In most electric vehicles, the Heating Ventilation and Air Conditioning (HVAC) system operates thru a dual loop; one loop for maintaining desired cabin comfort and a second loop to ensure optimum cell temperature for HV battery operation at varying climatic conditions, which the vehicle experiences over different seasons of the year This paper evaluates the limitations of a baseline system, in which the HVAC system consists of two parallel low-pressure cooling lines, one for maintaining cabin comfort and another for the purpose of battery cooling.
Technical Paper

Adopting Pothole Mitigation System for Improved Ride, Handling and Enhanced Component Life

2024-01-16
2024-26-0059
Potholes are a major cause of discomfort for riders and vehicle damage. The passive suspension systems which are used in the passenger vehicles are primarily reaction based. These can’t adapt to the changing road conditions which means the best ride quality and handling characteristics cannot be ensured for different driving situations. Passive suspension system also needs more maintenance due to its inability to reduce the impact of the road irregularities. In recent years, semi-active suspension systems have been developed to improve ride comfort and vehicle safety. This paper covers the integration of a semi-active suspension system with a road preview mechanism with a TATA car model to investigate its impact on ride comfort, handling characteristics and component loads in digital domain. A quarter car vehicle model is used to compare different active damping control strategies.
Technical Paper

An Integrated Approach Using Multi-Body Dynamics Simulation & Driving Simulator towards Chassis Development for an SUV Vehicle

2024-01-16
2024-26-0050
Driving dynamics performance is one of the key customer attributes to be developed during product development. In the vehicle development process, freezing the hardware of the chassis aggregates is one of the major priorities to kick off the other vehicle development activities. The current work involves the development of a multilink suspension for an SUV class vehicle. Typically, each OEM performs several product development loops for maturing the vehicle design. The driving dynamics performance evaluation and tuning happens on a physical vehicle with the driver in Loop. Tuning of suspension parameter on the physical vehicle entails actual replacement of parts/components. This encompasses multiple tuning cycles in product development associated with increased cost and test time. To reduce the product development time and cost while delivering first time right chassis configuration, we took an approach of getting driver-in-loop through driving simulator in the concept phase.
Technical Paper

Analysis of Automotive Control Pedals Ergonomics through Mathematical Modelling Based on Human Anthropometry

2017-01-10
2017-26-0252
Vehicle Ergonomics is one of the most vital factor to be considered in vehicle design and development, as the customer wants a comfortable and performance oriented vehicle. An uncomfortable driving posture can lead to painful driving experiences for longer hauls. The control pedals viz. Accelerator, Brake and clutch pedal (ABC Pedals), are the most frequently used parts in the vehicle, their proper positioning with respect to human anthropology is of prime importance, from driver comfort viewpoint. The methodology currently used for optimizing ergonomics with respect to the positioning of pedals in a vehicle included; measuring anthropometric angles manually with the help of H-Point Machine, subjective jury analysis and through software like RAMSIS, JACK, etc. Manual measurement doesn’t give the flexibility of iterations for optimization. The subjective analysis is based on insinuations thereby, cannot be standardized.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

Body Block FE Model Development and Correlation with Physical Tests

2017-01-10
2017-26-0293
Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
Technical Paper

Brake Pad Life Monitoring System Using Machine Learning

2024-01-16
2024-26-0032
In the context of vehicular safety and performance, brake pads represent a critical component, ensuring controlled driving and accident prevention. These pads consist of friction materials that naturally degrade with usage, potentially leading to safety issues like delayed braking response and NVH disturbances. Unfortunately, assessing brake pad wear remains challenging for vehicle owners, as these components are typically inaccessible from the outside. Moreover, Indian OEMs have not yet integrated brake pad life estimation features. This research introduces a hybrid machine learning approach for predicting brake pad remaining useful life, comprising three modules: a weight module, utilizing mathematical formulations based on longitudinal vehicle dynamics to estimate vehicle weight necessary for calculating braking kinetic energy dissipation; and temperature and wear modules, employing deep neural networks for predictive modeling.
Technical Paper

Characterization of TiN Precipitates and It’s Morphology in Spring Steel for Commercial Vehicle Leaf Spring Suspension

2023-05-25
2023-28-1317
Leaf springs are used for vehicle suspension to support the load. These springs are made of flat sections of spring steel in single or in stack of multiple layers, held together in bracketed assembly. The key characteristics of leaf spring are defined as ability to distribute stresses along its length and transmit a load over the width of the chassis structures. The most common leaf spring steels are carbon steels alloyed with Cr and micro-alloyed with Ti, V and Nb. The specific thermomechanical process and alloying elements result in specific strength and fatigue properties for spring steels. The unique properties which facilitate use of spring steel in leaf spring suspensions are ability to withstand considerable twisting or bending forces without any distortion. The microstructure of these steel determines the performance and reflects the process of steel manufacturing. The performance is mainly determined by evaluating fatigue life durability.
Technical Paper

Compliance of ISO 26262 Safety Standard for Electric Power Steering System

2021-09-22
2021-26-0025
This paper is an application of ISO 26262 functional safety standards for fail-safe design, development and validation of Electric Power Assisted Steering (EPAS) System. As part of safety feature to save lives, prevent injuries and reduce economic loss due to accidents, many research institutes are working to ensure the safety and reliability of emerging safety-critical Electronic Control Systems in automobile applications. As, Advanced Driver Assistance Systems (ADAS) and other emerging technologies are introduced in the automobile application, the overall safety of these advanced electronic systems relies on the vehicle safety systems, such as steering systems. This paper outlines the approach of performing the Hazard Analysis & Risk Assessment (HARA) and developing a Functional Safety Concept. This approach incorporates several analysis methods, including Hazard and Operability study, Functional Failure Modes and Effects Analysis.
Technical Paper

Comprehensive Assessment of Driver Monitoring System for Commercial Vehicle Applications Using Innovative Lab Testing Approach

2024-01-16
2024-26-0027
The commercial vehicle sector (especially trucks) has major role in economic growth of a nation. With improving infrastructure, increasing number of commercial vehicles and growing amount of Vulnerable Road Users (VRUs) on roads, accidents are also increasing. As per RASSI (Road Accident Sampling System India) FY2016-21 database, commercial vehicles are involved in 43% of total accidents on Indian roads. One of the major causes of these accidents is Driver Drowsiness and Inattention (DDI) (approx. 10% contribution in total accidents). This paper describes novel driver-in-loop performance assessment methodology for comprehensive verification of Driver Monitoring System (DMS) for commercial vehicle application. Novelty lies in specification of test subjects, driving styles and variety of road traffic scenarios for verification of DMS system. Test setup is made modular to cater to different platform environments (Heavy, Intermediate, Light) with minor modifications.
Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Continuous Fiber Reinforced Composite Container for N1 Category of Vehicles

2021-09-22
2021-26-0251
The small commercial vehicle business is driven by demand in logistic, last mile transportation and white goods market. And to cater these businesses operational and safety needs, they require closed container on vehicle. As of now, very few OEM’s provide regulatory certified container vehicle because of constrains to meet inertia class of the vehicle. This paper focuses on design of a durable and extremely reliable container, made of the low-cost economy class glass fibre & core material. The present work provides the means to design the composite container for the N1 category of the vehicle. The weight of after-market metal container ranges between 300-350 Kg for this category of vehicle, which affects the overall fuel economy and emission of the vehicle. A detailed CAE analysis is done to design composite container suitable to meet inertia class targets and to achieve weight reduction of 30-40% as compared to metal container.
Technical Paper

Cost Effective Techniques for SCEV to Improve Performance & Life of Battery and Motor by Using Efficient Thermal Systems

2024-01-16
2024-26-0275
The automotive world is moving towards electric powertrain systems. The electric powertrain systems have emerged as a promising alternative to the conventional powertrain system. The performance of electric vehicle is highly dependent on operating temperature of electric and electronic components of the vehicle. All power electronics and electric components in EV generate heat during operation and it must be removed to prevent overheating of components. Higher temperatures raise safety concerns whereas lower temperatures deteriorate the performance of power electronics & electric components. These power electronics & electrical components perform efficiently and safely if operated within certain temperature range. This paper presents an advanced efficient cost-effective thermal technique for small commercial electric vehicle (SCEV) to improve the performance & life of major electric components.
Technical Paper

Crash Pulse Characterization for Restraints System Performance Optimization

2015-01-14
2015-26-0152
The vehicle crash signature (here on referred as crash pulse) significantly affects occupant restraints system performance in frontal crash events. Restraints system optimization is usually undertaken in later phase of product development. This leads to sub-optimal configurations and performance, as no opportunity exists to tune vehicle structure and occupant package layouts. In concept phase of development, crash pulse characterization helps to map occupant package environment with available structure crush space and stiffness. The crash pulse slope, peaks, average values at discrete time intervals, can be tuned considering library of restraints parameters. This would help to derive an optimal occupant kinematics and occupant-restraints interaction in crash event. A case study has been explained in this paper to highlight the methodology.
Technical Paper

Design Optimization and Cost Effective Methodology for Column Mounted Single Stalk Combination Switch.

2011-04-12
2011-01-0775
As the automobile industry in India is growing fast and competitive, there is a need to design the vehicle and its parts at most cost effective. This paper gives the details of design optimization and cost effective methodology followed to develop a Single Stalk Combination Switch, without degrading the end user delight. This paper describes various design criteria affecting the combination switch design.
X