Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Analysis of Engine Mount Stiffness and Stopper Gap Tuning for Better NVH Performance

2017-01-10
2017-26-0196
Key on/off Vibrations plays an important role in the quality of NVH on a vehicle. Hence having a good KOKO in the vehicle is desirable by every OEM. The vibration transfer to the vehicle can be refined by either reducing the source vibrations or improving isolation. In this study, critical factors affecting KOKO vibration has been identified. Focus has been given on improving the KOKO by change in mounting system stiffness & stopper gap, and assuming other parameters as constant. The study highlights a new simulation approach using ADAMS View to help run a DOE for solving KOKO issue on vehicle. The contribution of C mount stiffness and stopper gap is shown through simulation results. The correlation between simulation & test results has been established by measuring rigid body modes and KOKO vibration on vehicle for a set of mount configuration. Test results show significant KOKO improvement with the mount configuration optimized through simulation.
Technical Paper

Virtual Analysis of Engine Mount Stiffness Tuning for Better NVH Performance

2021-08-31
2021-01-1026
If we see from the past and now competition in automotive industry increased tremendously and every car manufacturer are bringing up there innovations into the market and giving a lot of options to the customers to choose and the customer experience as well as satisfaction has become one of the main driver of success for the company. In today’s world of automotive design virtual analysis is playing a crucial role in the design and development. There are software’s that are available in market to simulate practical conditions digitally. Here we are mainly focused on effect of change in engine mount stiffness on acceleration at driver seat rail point using ADAMS. Which facilitates reduction of design of experiments and finalizing optimized stiffness values for engine mounts for engine idle vibration refinement point of view. ADAMS is mechanical system analysis software where we can simulate the dynamic behavior and distribution of loads throughout the system.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

Thermal Protection of Rear Mounted Engine and Its Components Using a Ventilation Fan with Unique Monitoring and Fault Diagnosis Technique

2017-03-28
2017-01-0620
The engine compartment of passenger car application contains various source which radiates the produced heat and raises the temperature level of the compartment. The rise in compartment temperature increases the body temperature of individual component. The rise in body temperature of critical components can endanger the durability or functionality of the specific component or a system in which it operates. The aim of this paper is to strategize thermal protection of the rear mounted engine and its components of a vehicle having radiator and cooling fan mounted in front. An additional ventilation fan with speed sensor is fitted alongside rear mounted engine and a unique monitoring technique framed in the EMS ECU to protect critical components like HT cables, alternators, ECUs, wiring harness etc. from thermal damage. The EMS continuously monitors the engine speed, vehicle speed and the PWM signal of ventilation fan to ensure the intended operation of the ventilation fan.
Technical Paper

The Impact of Switchable Hydromount during Idle and Ride Performance of Vehicle

2017-06-05
2017-01-1826
Engine mounting system maintains the position of powertrain in the vehicle with respect to chassis and other accessories during inertia, torque reaction loads and roadway disturbances. The mounting system also plays a role in terms of isolation of the rest of the vehicle and its occupants from powertrain and helps in maintaining vehicle ride and handling condition. This paper investigates the performance comparison between hydromount and switchable hydromount during idle and ride performance. The optimization scheme aims to improve the performance of the mounting system in order to achieve overall powertrain performance and NVH attribute balancing through switchable mount technology.
Technical Paper

Systematic Approach to Overcome Cavitation Noise Issue in Decoupled Hydraulic Mount

2021-08-31
2021-01-1027
NVH refinement of passenger vehicle is very much essential to level that customer did not find any irritation. Engine mounting selection and design is critical to achieve targeted NVH performance. Most of OEM’s are using properly tuned hydromount to have best idling NVH performance. Hydro-mount design should be tuned at problematic frequency where we can get the very low dynamic stiffness and can get the required performance. Hydromount should be designed carefully otherwise there will be abnormal noise due to cavitation effect. Cavitation noise is such a noise which is very difficult to identify that it is coming from mount. Cavitation is the formation and collapse of vapor bubbles in a working fluid when local static pressure falls below the vapor pressure of the working fluid. Systematic approach is presented in this paper to detect cavitation noise from hydraulic mount and how to overcome the same.
Technical Paper

Study of Clutch Judder Phenomenon in Manual Transmission Vehicle and Its Analysis Approach

2019-01-09
2019-26-0215
Clutch engagement judder is a phenomenon wherein the driver experiences vibrations on seat during the clutch engagement process for the vehicle launch. Clutch engagement judder is one of the critical vehicle attributes as a part of overall vehicle NHV. Torsional oscillations, specifically originating from clutch in the driveline during clutch engagement, are referred as clutch engagement judder. Judder is a phenomenon wherein friction induced torsional vibrations are generated in the driveline because of sliding contact between clutch and flywheel, during engagement. These resulting oscillations inherit the first resonance frequency of the driveline. The engagement judder not only affects the dynamics of transmission system but also the vehicle, because of excitations being transferred to body via suspensions and mounts. Passengers experience these oscillations as vibrations during vehicle launch. If excitation level is high then it may cause discomfort to passengers.
Technical Paper

Simulator Development for Steer-by-Wire Concept Evaluation

2019-01-09
2019-26-0099
In the recent years steering feel characteristics have emerged as one of the important brand image attributes of automotive OEMs. Since past few decades, the hydraulic assisted steering system (HPAS) on which lot of research was done to tune the steering feel has been taken over by electric power assisted steering (EPAS) system. The EPAS primarily uses an electric motor controlled by an electronic control unit to assist the driver in maneuvering the vehicle. The next big leap in the steering system advancement is steer-by-wire (SbW) technology where the mechanical linkage between the steering wheel and the road wheels is eliminated. The advantages of this system are ease to use, elimination of noise-vibration-harshness of steering system caused by road forces, modularly of steering system for packaging, improved visibility to front-end displays and road ahead and a fun to drive concept.
Technical Paper

Simulation of Driveline Rattle using Elastic Multi Body Dynamics Approach

2017-01-10
2017-26-0191
As automotive technology has evolved, gear rattle has become a prominent contributor for cabin noise as the masking from the engine noise has decreased. The market and customer expectation make the rattle noise a question to be addressed as early as possible in the vehicle development process. However, to simulate rattle, it calls for a detailed modeling of different complex subsystems of driveline to represent their true characteristics. Thus, the paper adopts an FE based elastic multi body dynamics model to predict gear rattle. The approach involves modeling of a complete flexible driveline using condensed FE models from Nastran in AVL Excite Powerunit/Transmission module. It includes combustion pressure as input excitations to crankshaft and then predicts parameters like gear teeth impacts, gear normal meshing force, dynamic mesh stiffness & overall contact state in transient and frequency domain. The output parameters are then analyzed to evaluate the rattle index.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Technical Paper

Reduction of Steering Effort and Turning Circle Diameter for Mechanical Steering in Light Commercial Vehicles for Better Driver Comfort

2011-09-13
2011-01-2147
New generation light commercial vehicles are expected to have lower steering effort, high self centering and less turning circle diameter covering large variety of wheelbases from 2.8 m to 4.5 m even with mechanical steering and keeping same number of total turns of steering wheel compared to old generation light commercial vehicles. To address above requirements, below parameters related to steering and rigid front axle were studied. 1 Caster angle of front axle 2 Steering compliance and Steering ball joint articulation angle 3 Front axle kingpin axial play 4 Steering gearbox ratio 5 Pitman arm length The effect of above parameters was studied in isolation and combination. This optimization has resulted in least steering effort and least turning circle diameter in light commercial vehicles with mechanical steering and option of power steering could be eliminated for cost reduction.
Technical Paper

Recycling of Used Up Crankshaft Grinding Wheels

2012-04-16
2012-01-1060
For sustainability in automobile manufacturing, recycle, reuse, and repair of used up cutting tools is now an established process. Although many types of tools were designed for one time use and then throw, an increasing awareness of the impact on the natural resources have made manufacturers to put some of these back to use or sell it back to suppliers who have put up a mechanism to extract the elements e.g. Tungsten and use it for manufacturing of new tools. There are many ways in which cutting tools can be recycled. Be it by reshaping a used up throwaway type tool [1], by redesigning of a tool holder for the use of unused cutting edges [2] or reusing short length drills that are used in making of long oil holes in crank case, cylinder head, cam shaft or connecting rods [3]. This paper demonstrates successful use of used up crankshaft grinding wheels.
Technical Paper

Radiated Noise Reduction in a Single Cylinder Direct Injection (DI) Naturally Aspirated (NA) Engine

2011-05-17
2011-01-1503
Small goods carrier and passenger vehicles powered by Naturally Aspirated (NA) Direct Injection (DI) diesel engines are popular in Indian automobile market. However, they suffer from inherently high radiated noise and poorly perceived sound quality. This paper documents the steps taken to reduce the radiated noise level from such an engine through structural modifications of major noise radiating components identified in the sound power analysis. The work is summarized as follows; Baseline radiated noise measurements of power train and identification of major noise sources through sound intensity mapping and noise source ranking (NSR) in an Engine Noise Test Cell (ENTC) Design modifications for identified major sources in engine structure Vehicle level assessment of the radiated noise in a Vehicle Semi-Anechoic Chamber (VSAC) for all the design modifications. A reduction of 7 dB at hot idle and 4 - 8 dB in loaded speed sweep conditions was observed with the recommended modifications.
Technical Paper

Performance Optimization of Electronically Controlled Hydraulic Fan Drive (HFD) Used in Commercial Application

2016-04-05
2016-01-0182
Ever tightening emission limits and constant pressure for increasing engine power are resulting in increased engine operating temperature. This coupled with continuous drive for fuel economy improvement because of the stiff competition are forcing OEMs to explore alternative cooling solutions resulting in less power take off and quick response as cooling requirement shoots up. Aim of this paper is to analyze the relative benefits of incorporating a new cooling fan drive system concept over conventional viscous fan driven cooling system with step-less variable speed control independent of engine speed variation. Hydraulic fan drive system control fan rpm based on the fluid temperature as compared to air temperature in viscous coupling fan drive system. HFD system provides quick response when increase in coolant temperature is observed. HFD system in this way provide more control on fan rpm.
Technical Paper

Optimized Variable Gear Ratio Steering System with Reduced EPAS Motor Size Achieving Performance Targets

2022-03-29
2022-01-0874
In electric power assisted steering system (EPAS), the steering assistance torque is provided by the electric motor. The motor rating is decided based on rack force requirement which depends on the vehicle weight, steering gear ratio, wheel angles etc. The load on the EPAS motor varies with respect to the steered angles of the road wheels. The motor experiences higher load towards the road wheel lock position. Most of the steering systems used on passenger cars has rack and pinion gear with constant gear ratio (C-factor). The constant gear ratio is decided to create right balance between vehicle handling behavior and steering effort. The constant gear ratio exerts higher steering load which the EPAS motor is required to support up to road wheel lock angles and hence EPAS motor size increases. This paper presents variable gear ratio (VGR) steering system in which gear ratio varies from center towards end lock stroke of rack & pinion.
Technical Paper

Optimization of Engine Mounting System for First Gear Launch Judder

2020-04-14
2020-01-0416
Normal engine mounting system is designed to carry loads of powertrain in all driving conditions and also isolate the vibrations of powertrain. Softer mounts are good for vibration isolation but it is not recommended to have softer mounts because durability will be affected adversely. Optimum stiffness needs to be finalized which will have balance between durability and performance. In addition to durability many performance parameters needs to be checked during the time of development. This study includes the development of engine mounting system for elimination of drive away judder in first gear. Maximum peak torque value for the drive-away event is in the range of 80Nm - 120Nm. In the worst case, this peak torque can reach to maximum 170Nm depending on maneuver, engine rpm is around 1100-1200. Steering wheel, instrument panel and whole vehicle cabin will vibrate for few seconds and then vehicle will run smoothly.
Technical Paper

Novel Technique to Address the Humming Noise with Pulley Driven Hydraulic Power Steering Pump on Light Commercial Vehicles

2021-09-22
2021-26-0308
In the current customer centric automotive market, NVH is one of the prime focus for the automotive industry. Almost all light commercial vehicles in the market are with hydraulic power steering system. Hydraulic power steering pump is heart of the steering system which circulates the hydraulic oil to steering gear for assisting the driver. One of the NVH problem which is inevitable with the hydraulic vane pump is humming noise and this is perceived as an irritant by end user. This paper describes a novel technique for reducing the humming noise which is perceived at driver ear level. Base vehicle level objective measurements is carried out to set the acceptance criteria. Existing design is optimized as per CAE iterations and vehicle updated with the multiple solutions and objective measurements are recorded. Driver ear level noise reduction upto 4 dB(A) perceived which meets acceptance criteria.
Technical Paper

NVH Refinement of Small Gasoline Engine through Digital and Experimental Approach

2017-01-10
2017-26-0211
Today’s competitive market demands for low cost passenger cars with lighter, smaller size, peppy response and fuel efficient engines and having world class NVH refinement levels. For such requirements, it is essential to optimize the product starting from the design conceptual stage, considering all performance aspects. Generally, three cylinder engines, due to less reciprocating masses, compared to four-cylinder engine, are said to be fuel efficient for the same capacity. Nevertheless, NVH problems caused by inherent imbalance forces and couples remain as drawback of the three-cylinder engine. However, through optimal design of the crank train, control of cylinder to cylinder pressure variation, stiffening of the engine structure, optimizing the integration with a vehicle through proper design of mounts, NVH refinement levels can be improved.
Technical Paper

Modelling of Internal Manifold Flow Distribution in PEMFC

2021-09-22
2021-26-0340
In a Polymer Electrolyte Membrane Fuel Cell (PEMFC) uniform reaction rate is very crucial to obtain maximum performance and to maintain the life of the cells. In PEMFC stack manifold plays an important role in maintaining uniform flow distribution of reactants (hydrogen, air and coolant) to the cells. Many studies have been carried out for examining the effect of manifold on flow distribution and pressure drop. Most studies are limited to small scale level (5 to 10 kW stack). This paper describes large scale fuel cell stack manifold design, flow distribution and pressured contours which is suitable for automotive vehicles (30 to 50 kW). The design consists of simplified scaled up fuel cell stack with cells connected in the series. Modelled the effect of internal manifold geometry of the fuel cell stack on pressure and flow distribution to the cells.
Technical Paper

Methods to Enhance Vehicle Handling by Improving Steering on Centre Feel and Return Ability in Commercial Vehicles Equipped with Hydraulic Assisted Steering System

2024-01-16
2024-26-0052
With rapid improvement in the road infrastructure the average turnaround time of the cargo vehicles has been reduced by 25%.New generation commercial vehicles has better power to weight ratio by integrating high horse power engines. With this latest vehicle configuration average speed of fleet is increased by 30% and more focus is provided towards vehicle safety and handling. Driver confidence on vehicle handling improves with better on Centre feel and return ability, these two parameters are easily tunable with modern electric power assisted steering system, whereas with hydraulic power assisted system these parameters optimization have adverse effect on other steering performance. This paper covers study of following parameters of hydraulic assisted steering system and its optimization on vehicle handling. 1. Steering Gearbox torsion bar stiffness 2. Steering pump flow 3. Caster angle 4. Steering Gearbox valve curve 5.
X