Refine Your Search

Topic

Author

Search Results

Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Virtual Analysis of Engine Mount Stiffness and Stopper Gap Tuning for Better NVH Performance

2017-01-10
2017-26-0196
Key on/off Vibrations plays an important role in the quality of NVH on a vehicle. Hence having a good KOKO in the vehicle is desirable by every OEM. The vibration transfer to the vehicle can be refined by either reducing the source vibrations or improving isolation. In this study, critical factors affecting KOKO vibration has been identified. Focus has been given on improving the KOKO by change in mounting system stiffness & stopper gap, and assuming other parameters as constant. The study highlights a new simulation approach using ADAMS View to help run a DOE for solving KOKO issue on vehicle. The contribution of C mount stiffness and stopper gap is shown through simulation results. The correlation between simulation & test results has been established by measuring rigid body modes and KOKO vibration on vehicle for a set of mount configuration. Test results show significant KOKO improvement with the mount configuration optimized through simulation.
Technical Paper

Virtual Analysis of Engine Mount Stiffness Tuning for Better NVH Performance

2021-08-31
2021-01-1026
If we see from the past and now competition in automotive industry increased tremendously and every car manufacturer are bringing up there innovations into the market and giving a lot of options to the customers to choose and the customer experience as well as satisfaction has become one of the main driver of success for the company. In today’s world of automotive design virtual analysis is playing a crucial role in the design and development. There are software’s that are available in market to simulate practical conditions digitally. Here we are mainly focused on effect of change in engine mount stiffness on acceleration at driver seat rail point using ADAMS. Which facilitates reduction of design of experiments and finalizing optimized stiffness values for engine mounts for engine idle vibration refinement point of view. ADAMS is mechanical system analysis software where we can simulate the dynamic behavior and distribution of loads throughout the system.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

Thermal Protection of Rear Mounted Engine and Its Components Using a Ventilation Fan with Unique Monitoring and Fault Diagnosis Technique

2017-03-28
2017-01-0620
The engine compartment of passenger car application contains various source which radiates the produced heat and raises the temperature level of the compartment. The rise in compartment temperature increases the body temperature of individual component. The rise in body temperature of critical components can endanger the durability or functionality of the specific component or a system in which it operates. The aim of this paper is to strategize thermal protection of the rear mounted engine and its components of a vehicle having radiator and cooling fan mounted in front. An additional ventilation fan with speed sensor is fitted alongside rear mounted engine and a unique monitoring technique framed in the EMS ECU to protect critical components like HT cables, alternators, ECUs, wiring harness etc. from thermal damage. The EMS continuously monitors the engine speed, vehicle speed and the PWM signal of ventilation fan to ensure the intended operation of the ventilation fan.
Technical Paper

The Impact of Switchable Hydromount during Idle and Ride Performance of Vehicle

2017-06-05
2017-01-1826
Engine mounting system maintains the position of powertrain in the vehicle with respect to chassis and other accessories during inertia, torque reaction loads and roadway disturbances. The mounting system also plays a role in terms of isolation of the rest of the vehicle and its occupants from powertrain and helps in maintaining vehicle ride and handling condition. This paper investigates the performance comparison between hydromount and switchable hydromount during idle and ride performance. The optimization scheme aims to improve the performance of the mounting system in order to achieve overall powertrain performance and NVH attribute balancing through switchable mount technology.
Technical Paper

Systematic Approach to Overcome Cavitation Noise Issue in Decoupled Hydraulic Mount

2021-08-31
2021-01-1027
NVH refinement of passenger vehicle is very much essential to level that customer did not find any irritation. Engine mounting selection and design is critical to achieve targeted NVH performance. Most of OEM’s are using properly tuned hydromount to have best idling NVH performance. Hydro-mount design should be tuned at problematic frequency where we can get the very low dynamic stiffness and can get the required performance. Hydromount should be designed carefully otherwise there will be abnormal noise due to cavitation effect. Cavitation noise is such a noise which is very difficult to identify that it is coming from mount. Cavitation is the formation and collapse of vapor bubbles in a working fluid when local static pressure falls below the vapor pressure of the working fluid. Systematic approach is presented in this paper to detect cavitation noise from hydraulic mount and how to overcome the same.
Journal Article

Study of Dynamics Stiffness and Shape Factor of Rubber Mounts to Address High-Frequency Resonance Issue in Electric Powertrain Mounting System

2020-09-25
2020-28-0341
Electric motor mounts resonate at high frequency in the range of 600 to 1000Hz with motor excitation frequency resulting in isolation performance deterioration. There is a selection process of motor mounts such that the force-transfer under transient torque reduced and also avoids high-frequency resonance. The rubber dynamic stiffness plays a significant role in excitation frequency. Rubber shape factor and compound directly contribute towards the dynamic stiffness properties of the mount. Isolation efficiency depends on force transfer to the body and resonance phenomenon. In this paper, the rubber shape of motor mounts, which affect progression characteristics as well as high-frequency resonance, is discussed. The wings-effect of rubber bushes discussed which can be tuned to get the desired frequency shift in order to avoid resonance.
Technical Paper

Study of Clutch Judder Phenomenon in Manual Transmission Vehicle and Its Analysis Approach

2019-01-09
2019-26-0215
Clutch engagement judder is a phenomenon wherein the driver experiences vibrations on seat during the clutch engagement process for the vehicle launch. Clutch engagement judder is one of the critical vehicle attributes as a part of overall vehicle NHV. Torsional oscillations, specifically originating from clutch in the driveline during clutch engagement, are referred as clutch engagement judder. Judder is a phenomenon wherein friction induced torsional vibrations are generated in the driveline because of sliding contact between clutch and flywheel, during engagement. These resulting oscillations inherit the first resonance frequency of the driveline. The engagement judder not only affects the dynamics of transmission system but also the vehicle, because of excitations being transferred to body via suspensions and mounts. Passengers experience these oscillations as vibrations during vehicle launch. If excitation level is high then it may cause discomfort to passengers.
Technical Paper

Simulator Development for Steer-by-Wire Concept Evaluation

2019-01-09
2019-26-0099
In the recent years steering feel characteristics have emerged as one of the important brand image attributes of automotive OEMs. Since past few decades, the hydraulic assisted steering system (HPAS) on which lot of research was done to tune the steering feel has been taken over by electric power assisted steering (EPAS) system. The EPAS primarily uses an electric motor controlled by an electronic control unit to assist the driver in maneuvering the vehicle. The next big leap in the steering system advancement is steer-by-wire (SbW) technology where the mechanical linkage between the steering wheel and the road wheels is eliminated. The advantages of this system are ease to use, elimination of noise-vibration-harshness of steering system caused by road forces, modularly of steering system for packaging, improved visibility to front-end displays and road ahead and a fun to drive concept.
Technical Paper

Simulation of Heavy Commercial Vehicle Response to Rear Super Single Tire Blow Out

2017-01-10
2017-26-0341
The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
Technical Paper

Simulation of Driveline Rattle using Elastic Multi Body Dynamics Approach

2017-01-10
2017-26-0191
As automotive technology has evolved, gear rattle has become a prominent contributor for cabin noise as the masking from the engine noise has decreased. The market and customer expectation make the rattle noise a question to be addressed as early as possible in the vehicle development process. However, to simulate rattle, it calls for a detailed modeling of different complex subsystems of driveline to represent their true characteristics. Thus, the paper adopts an FE based elastic multi body dynamics model to predict gear rattle. The approach involves modeling of a complete flexible driveline using condensed FE models from Nastran in AVL Excite Powerunit/Transmission module. It includes combustion pressure as input excitations to crankshaft and then predicts parameters like gear teeth impacts, gear normal meshing force, dynamic mesh stiffness & overall contact state in transient and frequency domain. The output parameters are then analyzed to evaluate the rattle index.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Journal Article

Sensor less Wash Fluid Detection in Automotive Application

2013-04-08
2013-01-1338
The proposed paper describes the hardware and software method used for detection of wash fluid level in water tank used in automotive; thereby eliminating the need for sensor (Reed type switch mounted on washer bottle) for low wash fluid detection. Wash motor is used for water spray on windscreen during wash and wipe operation. The proposed system makes use of hardware circuit used to drive the wash motor usually of DC (Direct current) type and a feedback circuitry to read back the current consumed by motor during particular wash operation. This hardware system is coupled with software algorithm such that during IGNITION ON instance wash motor will be turned on such as to get motor current readings to determine amount of load operated by motor which is related to wash fluid inside the washer bottle. Motor operation is optimized so as to avoid water spray causing nuisance to user.
Technical Paper

Regulatory Norms and Effect on Transmission Component Validation

2021-09-22
2021-26-0460
With the advent of BS VI regulations, automotive manufacturers are required to innovate the powertrains, fuel systems, exhaust and its after treatment systems to meet the regulatory requirements. The exhaust regulations can be met either by reducing the exhaust gases being generated by the engine (attacking the source) or by treating the exhaust gases in after treatment devices. The choice of the opted system varies with the manufacturer. The after-treatment devices such as catalytic converters are generally mounted in the engine compartment to take advantage of high temperature of exhaust gases to yield the reactions. Such an arrangement imposes a lot of thermal load on the peripheral components such as gearshift cables, bearings, oil seals, driveshafts etc. Thermal shields or thermal sleeve are used to address thermal issue and to protect transmission components.
Technical Paper

Reduction of Idle Shake in a Small Commercial Vehicle

2015-06-15
2015-01-2352
Noise Vibration and Harshness (NVH) refinement is one of the important parameters in modern vehicle development. In city traffic conditions, idling is an engine operating condition where a driver focuses attention more to his/her vehicle. Tactile vibration & noise levels inside the cab play an important role in all vehicles, especially those powered by diesel engines where combustion pressures are higher. They lead to discomfort & fatigue of passengers of even a low cost vehicle. Now its idle NVH is influenced mainly by vibration-isolation provided by power-train (PT) mounting design, This paper describes steps taken to improve the idle vibrations at a driver seat of a small commercial vehicle (SCV) with a 2-cylinder diesel engine of 800 cc through redesign of PT-mounting along with fine tuning of idle speed of the engine. A resonance was avoided between the first firing order at idling and PT rigid-body mode in pitching.
Technical Paper

Recycling of Used Up Crankshaft Grinding Wheels

2012-04-16
2012-01-1060
For sustainability in automobile manufacturing, recycle, reuse, and repair of used up cutting tools is now an established process. Although many types of tools were designed for one time use and then throw, an increasing awareness of the impact on the natural resources have made manufacturers to put some of these back to use or sell it back to suppliers who have put up a mechanism to extract the elements e.g. Tungsten and use it for manufacturing of new tools. There are many ways in which cutting tools can be recycled. Be it by reshaping a used up throwaway type tool [1], by redesigning of a tool holder for the use of unused cutting edges [2] or reusing short length drills that are used in making of long oil holes in crank case, cylinder head, cam shaft or connecting rods [3]. This paper demonstrates successful use of used up crankshaft grinding wheels.
Technical Paper

Radiated Noise Reduction in a Single Cylinder Direct Injection (DI) Naturally Aspirated (NA) Engine

2011-05-17
2011-01-1503
Small goods carrier and passenger vehicles powered by Naturally Aspirated (NA) Direct Injection (DI) diesel engines are popular in Indian automobile market. However, they suffer from inherently high radiated noise and poorly perceived sound quality. This paper documents the steps taken to reduce the radiated noise level from such an engine through structural modifications of major noise radiating components identified in the sound power analysis. The work is summarized as follows; Baseline radiated noise measurements of power train and identification of major noise sources through sound intensity mapping and noise source ranking (NSR) in an Engine Noise Test Cell (ENTC) Design modifications for identified major sources in engine structure Vehicle level assessment of the radiated noise in a Vehicle Semi-Anechoic Chamber (VSAC) for all the design modifications. A reduction of 7 dB at hot idle and 4 - 8 dB in loaded speed sweep conditions was observed with the recommended modifications.
Technical Paper

Prediction of Vehicle Headlamp Condensation Phenomenon Using Computational Fluid Dynamics

2021-09-22
2021-26-0325
The main task of the automotive headlights on cars is to illuminate the roadway and facilitate the driver fatigue-free and safe driving. An automotive headlamp is exposed to thermal variations during its operations and also exposed to the different environmental conditions. Automotive headlamp compartment is not completely sealed and vents are provided to exchange the air between environment and headlamp compartment for thermal cooling of the internal components. An automotive headlamp compartment is an environment with high thermal and low air flow exchanges with the ambient as results humidity can accumulated inside the headlamp compartment and there is a possibility of thin mist layer formation on the lens inner surface [1]. The combined use of numerical simulation and experimental studies is an important approach for headlamp design. This paper summarizes CFD simulation results for automotive headlamp condensation and de-condensation using ANSYS FLUENT.
X