Refine Your Search

Topic

Author

Search Results

Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

Tackle Low Frequency Structural Vibration in AMT Car using Gear Shift Schedule Optimization

2017-01-10
2017-26-0198
The present work focuses on optimization of gear shift pattern of an AMT vehicle to improve its NVH performance without causing any adverse effect on any other vehicle performance attribute. The vehicle which was identified with the structural body resonance at low frequency had discomforting boom noise in a particular engine rpm zone and at corresponding vehicle speed. With the initial shift pattern (will be referred as V1 gear shift schedule), the gear shifts were calibrated such that when vehicle is driven in the city with 20 to 60 kmph speed, the vehicle operated mostly in the best fuel economy zone but it used to pass through structural resonance frequency. This resulted in the presence of continuous boom leading to an unpleasant driving experience. In order to avoid the presence of boom noise during city driving, the gear shift points were optimized (will be referred as V2 gear shift schedule) such that the vehicle did not operate in affected engine speed range.
Technical Paper

Solar Assisted Vehicle Electrical System (S.A.V.E.)

2012-04-16
2012-01-1058
S.A.V.E. (SOLAR-ASSISTED VEHICLE ELECTRICAL SYSTEM) is a microcontroller-based closed loop system designed to optimize the duty cycle of alternator in conventional vehicle electrical system. This has been done by integrating a SOLAR PANEL on the rooftop of a popular hatchback. The SOLAR PANEL supplies continuous power to battery for charging thereby reducing alternator duty cycle. Consequently, in order to optimize/control alternator functioning based on demand, a microcontroller has been incorporated. S.A.V.E. consists of a microcontroller which senses the instantaneous electrical load (in terms of current & voltage drawn) from battery. The controller using the intelligent algorithm keeps on checking this real-time consumption with the threshold values & decides when to activate/deactivate alternator. Thus with this controller, a) reduction in actual CO₂ emission & consequent, and b) 6% improvement in vehicle fuel efficiency has been achieved.
Technical Paper

Simulink Model for SoC Estimation using Extended Kalman Filter

2021-09-22
2021-26-0382
State of Charge (SoC) estimation of battery plays a key role in strategizing the power distribution across the vehicle in Battery Management System. In this paper, a model for SoC estimation using Extended Kalman Filter (EKF) is developed in Simulink. This model uses a 2nd order Resistance-Capacitance (2RC) Equivalent Circuit Model (ECM) of Lithium Ferrous Phosphate (LFP) cell to simulate the cell behaviour. This cell model was developed using the Simscape library in Simulink. The parameter identification experiments were performed on a new and a used LFP cell respectively, to identify two sets of parameters of ECM. The cell model parameters were identified for the range of 0% to 100% SoC at a constant temperature and it was observed that they vary as a function of SoC. Hence, variable resistance and capacitance blocks are used in the cell model so that the cell parameters can vary as a function of SoC.
Technical Paper

Simulation of Heavy Commercial Vehicle Response to Rear Super Single Tire Blow Out

2017-01-10
2017-26-0341
The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Simulation Based Development, Component Optimization and Integration for a Metropolitan Hybrid Electric Vehicle

2017-01-10
2017-26-0084
The authors of this technical paper conceptualize and illustrate a powertrain architecture for a hybrid electric vehicle coupled with a unique strategy to reduce a real life problem of driving in snail paced traffic. This architecture utilizes a relatively low powered hybrid electric prime mover that is generally used in mild hybrid vehicles, in an arrangement similar to a parallel hybrid system. Here, the electric machine is mounted on the input shaft of the gearbox and the clutch is actuated automatically through an Automated Manual Transmission (AMT) system. Therefore, it is possible to completely disengage the engine from the driveline and drive the vehicle independently through an appropriately sized electric prime mover. The high gear ratio between the drivetrain and the electric prime mover at lower gears can be leveraged to provide low velocity electric creep mode during which the vehicle can function as a pure Electric Vehicle (EV) while engine remains off.
Technical Paper

Regulatory Norms and Effect on Transmission Component Validation

2021-09-22
2021-26-0460
With the advent of BS VI regulations, automotive manufacturers are required to innovate the powertrains, fuel systems, exhaust and its after treatment systems to meet the regulatory requirements. The exhaust regulations can be met either by reducing the exhaust gases being generated by the engine (attacking the source) or by treating the exhaust gases in after treatment devices. The choice of the opted system varies with the manufacturer. The after-treatment devices such as catalytic converters are generally mounted in the engine compartment to take advantage of high temperature of exhaust gases to yield the reactions. Such an arrangement imposes a lot of thermal load on the peripheral components such as gearshift cables, bearings, oil seals, driveshafts etc. Thermal shields or thermal sleeve are used to address thermal issue and to protect transmission components.
Technical Paper

Recycling of Metal Cutting Inserts: A Different Approach

2010-04-12
2010-01-0273
A large number of metal cutting inserts are used in the manufacturing of automobile parts. These are made from hard metals like Carbide, Ceramic, Cermet, PCD and CBN. Since making of these hard metal inserts involve a high amount of energy in addition to natural resources namely Titanium, Tungsten, Cobalt etc, any attempt made therefore for reusing of the used up inserts will benefit environment because this reuse will lower down the demand on natural resource. Reuse can be done in a number of ways [ 1 ]. Many of these recycling techniques involve removing the dull portion developed during the first use by re sharpening [ 2 ]. A different approach is being suggested here in which used up inserts can be used directly. This approach leads to use of the unused cutting edges /corners of the insert without any re sharpening. Thus the cost of machining becomes half of the original cost or even more depending on the application for reuse.
Technical Paper

Performance Optimization of Electronically Controlled Hydraulic Fan Drive (HFD) Used in Commercial Application

2016-04-05
2016-01-0182
Ever tightening emission limits and constant pressure for increasing engine power are resulting in increased engine operating temperature. This coupled with continuous drive for fuel economy improvement because of the stiff competition are forcing OEMs to explore alternative cooling solutions resulting in less power take off and quick response as cooling requirement shoots up. Aim of this paper is to analyze the relative benefits of incorporating a new cooling fan drive system concept over conventional viscous fan driven cooling system with step-less variable speed control independent of engine speed variation. Hydraulic fan drive system control fan rpm based on the fluid temperature as compared to air temperature in viscous coupling fan drive system. HFD system provides quick response when increase in coolant temperature is observed. HFD system in this way provide more control on fan rpm.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Optimization of AC Control in Hybrid Electric Vehicles during Urban Drive Conditions

2017-01-10
2017-26-0087
Hybridization of vehicle drive train is an important step to increase energy security, reduce crude oil import, improvement of air quality and GHG reduction. Heavy traffic congestion poses a great challenge in improvement of fuel economy. Nowadays urban climatic condition forces the passenger to keep air-conditioning (AC) on; thus further decreasing the fuel economy. In a typical urban drive; the vehicle commutes with low speed forcing IC Engine to run in its low efficiency operational points. Further it is characterized by frequent start-stop and crawling. It has been observed that the power consumption for AC is comparable to that required for the vehicle propulsion. Hence the AC on condition with propelling vehicle demands higher power from engine creating a challenge for fuel economy improvement.
Technical Paper

Opportunities and Control Measures for Sustainable Transport Growth in Emerging Economy Regions-India

2013-04-08
2013-01-1037
Sustainable development is a very complex concept involving several inter-related issues and concerns. Globalization has given a new dimension to social, economic and environmental development associated with the perceived responsibilities and growth indicators. Both developing and developed countries have the opportunities to exploit comparative advantages in the changing economic, social and environmental scenario while targeting sustainable growth together with expansion of the business prospects. Every region perceives these opportunities with different notion. There is a plethora of indicators for assessing sustainability. However, assessment criteria, prioritization and trade off for a given sustainability parameter against the other could be very complex while evolving transport growth model in emerging economies.
Technical Paper

ORVM Based Cabin Thermal Comfort - A Technological Approach

2023-09-14
2023-28-0042
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour.
Technical Paper

NVH Refinement of Small Gasoline Engine through Digital and Experimental Approach

2017-01-10
2017-26-0211
Today’s competitive market demands for low cost passenger cars with lighter, smaller size, peppy response and fuel efficient engines and having world class NVH refinement levels. For such requirements, it is essential to optimize the product starting from the design conceptual stage, considering all performance aspects. Generally, three cylinder engines, due to less reciprocating masses, compared to four-cylinder engine, are said to be fuel efficient for the same capacity. Nevertheless, NVH problems caused by inherent imbalance forces and couples remain as drawback of the three-cylinder engine. However, through optimal design of the crank train, control of cylinder to cylinder pressure variation, stiffening of the engine structure, optimizing the integration with a vehicle through proper design of mounts, NVH refinement levels can be improved.
Technical Paper

Jute Fibre Based Composite for Automotive Headlining

2011-04-12
2011-01-0224
With increased awareness about environmental issues, the trend of automobile industry is to use ‘Recycled’ or ‘Biodegradable’ or ‘Energy Recoverable’ material. As a part of this programme, to make the vehicle ‘Green’ in nature, many automobile OEMs have taken the initiative to make use of natural fibre composite in their vehicles. Natural fibre based composite has been successfully proven for less critical as well as for semi-structural applications in an automobile. These typical applications are insulations, headlining, carpets, door pad etc. There is a demanding task for automotive OEMs to meet 85% Recyclability and 95% Recoverability targets by year 2015. To meet the RRR (Reuse, Recycle & Recover) and the ELV (End of Life) regulatory requirements, increased use of natural fibre based composite/ biopolymers is unavoidable. Natural fibre can offer potential advantages such as weight saving and improve overall green rating of the vehicle.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

Impact Analysis of an Alternate Environment Friendly Refrigerant Deployed in the Air Conditioning System of IC Engine and Electric Vehicles

2023-09-14
2023-28-0038
Today, most vehicles in developing countries are equipped with air conditioning systems that work with Hydro-Fluoro-Carbons (HFC) based refrigerants. These refrigerants are potential greenhouse gases with a high global warming potential (GWP) that adversely impact the environment. Without the rapid phasedown of HFCs under the Kigali Amendment to the Montreal Protocol and other actions, Earth will soon pass climate tipping points that will be irreversible within human time dimensions. Up to half of national HFC use and emissions are for the manufacture and service of mobile air conditioning (MAC). Vehicle manufacturers supplying markets in non-Article 5 Parties have transitioned from HFC-134a (ozone-safe, GWP = 1400; TFA emissions) to Hydro-Fluoro-Olefin, HFO-1234yf (ozone-safe, GWP < 1; TFA emissions) due to comparable thermodynamic properties. However, the transition towards the phasing down of HFCs across all sectors is just beginning for Article 5 markets.
Technical Paper

Hole Expansion Characteristics of Advanced High Strength Steel (AHSS) Grades and Their Effects on Manufacturability in Automotive Industry

2022-10-05
2022-28-0350
Currently, automotive industries are using Advanced High-Strength Steels (AHSS) sheet grades to achieve key requirements like light weighting and improved crash performance. But forming of AHSS grades becomes key challenge due to its lesser ductility and edge fracturing tendency during forming. In general, most of the automotive components undergoes shearing operations like blanking and punching which affects the edge ductility of the steel. AHSS grades possess limited edge ductility compared with conventional steel grades which results in edge fracturing due to tensile strain during stretch flanging operation. Stretch flange-ability is an important formability characteristic, which aids in material selection to avoid edge fracturing of complex shaped parts. Material with better stretch flange-ability possess better edge ductility and hence perform better in stretch flanging of sheet metal.
X