Refine Your Search

Topic

Author

Search Results

Technical Paper

“Chamfer Analysis for Smooth Diagonal Shifting by Using ‘Creo-MECHANISM’ Tool”

2023-10-31
2023-01-1676
In current competitive automobile sector, gear shift quality has become significant factor for vehicle evaluation. OEMs are sensibly focusing on improving gear shift quality to meet customer’s expectations. Though there are different gear shifting habits in different drivers, diagonal shifting is the fastest way of shifting gears in manual transmission vehicle. So the components linked with shift system should be designed to facilitate smooth diagonal gear shift pattern. This paper enlightens the process of defining chamfers on internal gear shifting components for smooth diagonal shifting movement of gear shift lever. It is hard to define chamfers by analytical or practical approach. Creo-mechanism is very useful simulation tool which can be used to understand diagonal shift patterns and to define the chamfers.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Torsional Fluctuations Consideration while Design of Synchro Rings

2018-09-10
2018-01-1823
In today’s manual transmissions of car, gearshift system requires high performance with particular emphasis on low effort, minimal travel and positive feel. To meet these targets, a high capacity multi cone synchronizers along with higher co-efficient of friction material used for lower gears. The design of synchronizer with these specifications is influenced by torsional fluctuations from engine. Excessive torsional vibrations leads to wobbling of synchro rings within the peripheral clearances with surrounding parts. Wobbling leads to abrasion wear of frictional area of synchro ring causing grating or crashing noise of gears during shifting. This paper presents the optimization of the multiple cone synchronizer design exposed to excessive torsional vibrations and validation of the same on test bench during development stage instead vehicle level validation.
Technical Paper

Tackle Low Frequency Structural Vibration in AMT Car using Gear Shift Schedule Optimization

2017-01-10
2017-26-0198
The present work focuses on optimization of gear shift pattern of an AMT vehicle to improve its NVH performance without causing any adverse effect on any other vehicle performance attribute. The vehicle which was identified with the structural body resonance at low frequency had discomforting boom noise in a particular engine rpm zone and at corresponding vehicle speed. With the initial shift pattern (will be referred as V1 gear shift schedule), the gear shifts were calibrated such that when vehicle is driven in the city with 20 to 60 kmph speed, the vehicle operated mostly in the best fuel economy zone but it used to pass through structural resonance frequency. This resulted in the presence of continuous boom leading to an unpleasant driving experience. In order to avoid the presence of boom noise during city driving, the gear shift points were optimized (will be referred as V2 gear shift schedule) such that the vehicle did not operate in affected engine speed range.
Technical Paper

Study of Clutch Judder Phenomenon in Manual Transmission Vehicle and Its Analysis Approach

2019-01-09
2019-26-0215
Clutch engagement judder is a phenomenon wherein the driver experiences vibrations on seat during the clutch engagement process for the vehicle launch. Clutch engagement judder is one of the critical vehicle attributes as a part of overall vehicle NHV. Torsional oscillations, specifically originating from clutch in the driveline during clutch engagement, are referred as clutch engagement judder. Judder is a phenomenon wherein friction induced torsional vibrations are generated in the driveline because of sliding contact between clutch and flywheel, during engagement. These resulting oscillations inherit the first resonance frequency of the driveline. The engagement judder not only affects the dynamics of transmission system but also the vehicle, because of excitations being transferred to body via suspensions and mounts. Passengers experience these oscillations as vibrations during vehicle launch. If excitation level is high then it may cause discomfort to passengers.
Technical Paper

Solar Assisted Vehicle Electrical System (S.A.V.E.)

2012-04-16
2012-01-1058
S.A.V.E. (SOLAR-ASSISTED VEHICLE ELECTRICAL SYSTEM) is a microcontroller-based closed loop system designed to optimize the duty cycle of alternator in conventional vehicle electrical system. This has been done by integrating a SOLAR PANEL on the rooftop of a popular hatchback. The SOLAR PANEL supplies continuous power to battery for charging thereby reducing alternator duty cycle. Consequently, in order to optimize/control alternator functioning based on demand, a microcontroller has been incorporated. S.A.V.E. consists of a microcontroller which senses the instantaneous electrical load (in terms of current & voltage drawn) from battery. The controller using the intelligent algorithm keeps on checking this real-time consumption with the threshold values & decides when to activate/deactivate alternator. Thus with this controller, a) reduction in actual CO₂ emission & consequent, and b) 6% improvement in vehicle fuel efficiency has been achieved.
Technical Paper

Simulation of Heavy Commercial Vehicle Response to Rear Super Single Tire Blow Out

2017-01-10
2017-26-0341
The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Simulation Based Development, Component Optimization and Integration for a Metropolitan Hybrid Electric Vehicle

2017-01-10
2017-26-0084
The authors of this technical paper conceptualize and illustrate a powertrain architecture for a hybrid electric vehicle coupled with a unique strategy to reduce a real life problem of driving in snail paced traffic. This architecture utilizes a relatively low powered hybrid electric prime mover that is generally used in mild hybrid vehicles, in an arrangement similar to a parallel hybrid system. Here, the electric machine is mounted on the input shaft of the gearbox and the clutch is actuated automatically through an Automated Manual Transmission (AMT) system. Therefore, it is possible to completely disengage the engine from the driveline and drive the vehicle independently through an appropriately sized electric prime mover. The high gear ratio between the drivetrain and the electric prime mover at lower gears can be leveraged to provide low velocity electric creep mode during which the vehicle can function as a pure Electric Vehicle (EV) while engine remains off.
Technical Paper

Simulating Bowden Cable Routing on Virtual Vehicle and Design Guidelines to Achieve the Best Cable Performance

2016-09-27
2016-01-8060
There has been immense focus on Gear Shift Quality as it is seen as an important factor for subjective evaluation of driving comfort of a vehicle with manual transmission. Synchronizer and driveline stiffness optimization is often the only area of focus for gear shift quality during early design stage. Proven Simulation models are already available for predicting the effect of synchronizer and driveline stiffness. Though Gear shift cable also has a significant effect on gear shift quality, neither design guidelines nor simulation models are available for predicting gear shift cable performance. Designers have relied on physical approach to establish cable routing, since cable routing cannot be predicted on virtual vehicle. In design phase cable routing is imagined and modeled in CAD using constrained curve geometry and later on established by physical trials on vehicle with various cable lengths, routing paths and clamp positions.
Technical Paper

Performance Optimization of Electronically Controlled Hydraulic Fan Drive (HFD) Used in Commercial Application

2016-04-05
2016-01-0182
Ever tightening emission limits and constant pressure for increasing engine power are resulting in increased engine operating temperature. This coupled with continuous drive for fuel economy improvement because of the stiff competition are forcing OEMs to explore alternative cooling solutions resulting in less power take off and quick response as cooling requirement shoots up. Aim of this paper is to analyze the relative benefits of incorporating a new cooling fan drive system concept over conventional viscous fan driven cooling system with step-less variable speed control independent of engine speed variation. Hydraulic fan drive system control fan rpm based on the fluid temperature as compared to air temperature in viscous coupling fan drive system. HFD system provides quick response when increase in coolant temperature is observed. HFD system in this way provide more control on fan rpm.
Technical Paper

Optimization of AC Control in Hybrid Electric Vehicles during Urban Drive Conditions

2017-01-10
2017-26-0087
Hybridization of vehicle drive train is an important step to increase energy security, reduce crude oil import, improvement of air quality and GHG reduction. Heavy traffic congestion poses a great challenge in improvement of fuel economy. Nowadays urban climatic condition forces the passenger to keep air-conditioning (AC) on; thus further decreasing the fuel economy. In a typical urban drive; the vehicle commutes with low speed forcing IC Engine to run in its low efficiency operational points. Further it is characterized by frequent start-stop and crawling. It has been observed that the power consumption for AC is comparable to that required for the vehicle propulsion. Hence the AC on condition with propelling vehicle demands higher power from engine creating a challenge for fuel economy improvement.
Technical Paper

Optimization Strategies to Enhance System Performance with Aged LNT on SUV

2024-01-16
2024-26-0035
Diesel oxidation catalysts (DOC) combined with NOx adsorbers and passive selective catalytic reduction (SCR) systems have demonstrated effectiveness in achieving high conversion efficiencies for CO, HC, and NOx emissions. This integrated exhaust after-treatment system has shown its efficiency in meeting the demanding BS6 Real Driving Emissions (RDE) standards. However, the assessment of emissions at the end of the system's life reveals a decrease in the conversion efficiency of aged exhaust systems, particularly affecting NOx, HC and CO emissions. Factors such as thermal aging and catalyst poisoning are identified as key contributors to the degradation of the after-treatment performance. This paper elucidates correlation methodologies applied to aged Lean NOx Trap (LNT) exhaust after-treatment systems. These methodologies aid in understanding the aging behavior of LNT samples and devising strategies to enhance the emissions performance aged samples during the end-of-life tests.
Technical Paper

Opportunities and Control Measures for Sustainable Transport Growth in Emerging Economy Regions-India

2013-04-08
2013-01-1037
Sustainable development is a very complex concept involving several inter-related issues and concerns. Globalization has given a new dimension to social, economic and environmental development associated with the perceived responsibilities and growth indicators. Both developing and developed countries have the opportunities to exploit comparative advantages in the changing economic, social and environmental scenario while targeting sustainable growth together with expansion of the business prospects. Every region perceives these opportunities with different notion. There is a plethora of indicators for assessing sustainability. However, assessment criteria, prioritization and trade off for a given sustainability parameter against the other could be very complex while evolving transport growth model in emerging economies.
Technical Paper

ORVM Based Cabin Thermal Comfort - A Technological Approach

2023-09-14
2023-28-0042
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour.
Technical Paper

NVH Refinement of Small Gasoline Engine through Digital and Experimental Approach

2017-01-10
2017-26-0211
Today’s competitive market demands for low cost passenger cars with lighter, smaller size, peppy response and fuel efficient engines and having world class NVH refinement levels. For such requirements, it is essential to optimize the product starting from the design conceptual stage, considering all performance aspects. Generally, three cylinder engines, due to less reciprocating masses, compared to four-cylinder engine, are said to be fuel efficient for the same capacity. Nevertheless, NVH problems caused by inherent imbalance forces and couples remain as drawback of the three-cylinder engine. However, through optimal design of the crank train, control of cylinder to cylinder pressure variation, stiffening of the engine structure, optimizing the integration with a vehicle through proper design of mounts, NVH refinement levels can be improved.
Technical Paper

Investigation and Resolution of Gear Slippage Issue in Manual North-South Transmission

2020-09-15
2020-01-2247
Gearbox and driveline durability is always been a sensitive subject from both end user and manufacturer’s point of view. Since powertrain is heart of vehicle, naturally it is expected to long last and perform satisfactorily for the entire vehicle life. Sometimes the driveline aggregates especially gearbox might face some issues because of various factors, but this is distinctively noted by the driver since it is one of the important touch point of the vehicle. The gear slippage is a very typical phenomenon observed in automotive gearbox. The issue of gear slippage is very sensitive because it leads to compromising safety of the driver, also it deteriorates gear shift quality and thereby performance of the vehicle. Generally, gear slippage is not observed during end of line testing or during early kilometers of vehicle. It is observed after some thousand kilometers, that to initially gear slippage is not observed consistently and that’s why it is difficult to identify at early stage.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
Journal Article

Gearshift Quality Sensitivity Analysis

2019-01-09
2019-26-0328
Gearshift quality is a perceived quality parameter. Hence, is getting much importance because of the increased awareness about comfortable and refined driving experience, especially in the case of passenger cars. When the topic of gearshift feeling is broached in manual transmission vehicles, synchronizer pack (shifter sleeve, engaging gear, strut, synchronizer and gear synchro ring assembly) have been the focus point for optimization. Synchronizer type (single, double or triple cone), lining material, datch chamfer angle of shifter sleeve/synchro ring of gear/synchronizer, all of these have been extensively studied in the past to improve the gearshift quality. With stringent timelines for vehicle development, OEMs prefer to use off-the-shelf powertrain systems developed by powertrain manufacturers. Due to this, avenues to refine gearshift feel gets reduced to a large extent and hence refinement becomes difficult.
X