Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Mapping of HPAS System Based on Steering Kinematic and Tire-Road Contact Patch Sliding Model

2019-01-09
2019-26-0225
In hydraulic power assisted steering (HPAS) system higher steering oil temperature can cause deterioration of oil reservoir, thermal failure of pump/valves and can diminish system performance. Thermal analysis is performed for HPAS system architecture development in order to maintain steering oil temperature within design limits for optimal performance & increased life of HPAS steering system. In present study mathematical model of HPAS system consisting of steering pump, flow and pressure control mechanism, rotary valve, steering circuit pipes and hoses, thermal interaction with ambient is developed. The model is able to predict steering torque-hydraulic pressure dynamics of HPAS system as per design. Developed HPAS system model is integrated with steering kinematic and uniquely developed tire-road contact patch sliding model for estimating non-linear rack force behavior at higher steering angle.
Technical Paper

Thermal Management System and Performance Characteristics of Electric Vehicle

2020-08-18
2020-28-0022
Thermal Management System (TMS) is equally or more important part of Battery Electric (BEV)/Hybrid Electric vehicle (HEV) than an internal combustion engine (ICE) vehicle. In an ICE vehicle, TMS ensures performance of power train/engine, after treatment/exhaust system and HVAC (Climate control) whereas it connected with safety and Range anxiety elimination additionally for the case of Electric Vehicle. Electric powertrain is not a new technology to the world but the technology is evolving in last few decades, to overcome the cost and make it commercially viable, charging infrastructural development and elimination of Range Anxiety. In last few years, Indian automotive industry has taken some major steps towards electrification journey for both passenger car and commercial vehicle. In BEVs, Battery Cooling or Battery thermal management System (BTMS or BCS) and Traction cooling system (TCS) are couple with nearly conventional HVAC circuit used in any ICE vehicle.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Technical Paper

Regulatory Norms and Effect on Transmission Component Validation

2021-09-22
2021-26-0460
With the advent of BS VI regulations, automotive manufacturers are required to innovate the powertrains, fuel systems, exhaust and its after treatment systems to meet the regulatory requirements. The exhaust regulations can be met either by reducing the exhaust gases being generated by the engine (attacking the source) or by treating the exhaust gases in after treatment devices. The choice of the opted system varies with the manufacturer. The after-treatment devices such as catalytic converters are generally mounted in the engine compartment to take advantage of high temperature of exhaust gases to yield the reactions. Such an arrangement imposes a lot of thermal load on the peripheral components such as gearshift cables, bearings, oil seals, driveshafts etc. Thermal shields or thermal sleeve are used to address thermal issue and to protect transmission components.
Technical Paper

Reduction in Human Effort in Shifting and Selection Forces in Manual Transmission system

2019-01-09
2019-26-0366
Transmission system is important part of automobile. In the current era of automobile, there are two types of gear shifting mechanism: manual and automatic. Manual gear shifting mechanism is complex and require much effort for shifting and selection of gear so to surmount much effort by kinematic analysis of linkages, joints ergonomically. By changing these parameters in gear shifting mechanism it gives flexibility and less effort for shifting and selection of gear. It also reduce feasibility of error of shifting and selection of gear. Transmission system is modeled in CREO 2.0 and measuring and data analysis of the shift and selection forces of gear was done with the load sensor shown in Figure 6 and programming was done in LABVIEW 2015. The final cause of this technical paper is to decrease physical effort by driver for shifting and selection of gear.
Technical Paper

Prescriptive Modeling, Simulation and Performance Analysis of Mild Hybrid Vehicle and Component Optimization

2015-01-14
2015-26-0010
Reckoning today's environmental rules, legislative regulation and market requirements- the automotive industry of late has witnessed an increased vigor and enthusiasm by auto makers towards electrification of vehicles across all platforms in a bid to improve fuel economy and performance. Hybridization of a vehicle often involves the use of expensive high performance motors and large battery packs. However due to the challenges associated with the packaging of bulky battery and motor systems in existing drive train, mild hybrid systems have been preferred over strong or full hybrids especially in current production models as they don't entail any major change in architecture and the reduced battery size, both of which provide for easier packaging of components.
Technical Paper

Optimization of State Machine Architecture for Automotive Body Control

2016-02-01
2016-28-0233
The OEM's aim is to reduce development time and testing cost, hence the objective behind this work is to achieve a flexible stateflow model so that changes in the application during supply chain or development, on adding/deleting any switches, varying timer cycle, changing the logic for future advancements or else using the logic in different application, would end in minimal changes in the chart or in its states which would reflect least changes in the code. This research is about designing state machine architecture for chime/buzzer warning system and wiper/washer motor control system. The chime/buzzer stateflow chart includes various input switches like ignition, parking, seat belt buckle, driver door and speed accompanied with warning in the form of LED, lamp and buzzer. The logic is differentiated according to gentle and strong warning. Various conditions and scenarios of the vehicle and driver are considered for driver door and seat belt which is resolved in the chart.
Technical Paper

Optimization of Off-Road Mobility and Handling by Anti-Roll Bar Deletion and Shock-Up Tuning on Military Vehicle: A Case Study

2010-10-05
2010-01-1915
A 4t off-road military application vehicle was offered to the customers for assessment. During the evaluation adverse feedback of 1) harsh ride in off-road terrain, particularly during hump-crossing and 2) issues during high mobility were reported. Vehicle configuration was front and rear rigid axle suspension with leaf spring anti-roll bar, 4×4 and all terrain tyres. Vehicle application was “on-road” [GS (General-services)], as well as “off-road” (Reconnaissance purpose). The feedback was critically analyzed on the vehicle with the simulation of field conditions. Since the vehicle was still under customer evaluation, solution for the feedback required was quick and within boundary condition (maximum possible allowable limits of modification) of no major change in the suspension design as it was affects homologation cycle. Present paper describes the detailed analysis of the influence of each parameter on system.
Technical Paper

Optimization of Multiple Injection Strategies to Improve BSFC Performance of a Common Rail Direct Injection Diesel Engine

2016-02-01
2016-28-0002
Present stringent emissions norms; global fossil fuel energy scenario and competitive automotive market has driven many researches on diesel engine combustion in both academic and industry level. This work is an effort to improve the fuel economy without compromising emissions level of typical six cylinders inline CRDI diesel engine using optimized multiple injection strategy. There was some unusual nature of BSFC (Brake specific fuel consumption) observed on such typical engine. Also, Torque curve was not up to the mark for better drivability. This engine is equipped with most familiar in cylinder NOx reduction device namely EGR and multiple injections. There were few experiments conducted on same engine to optimize the BSFC using different multi injection strategies in line to marginal change of injection timing with respect to crank angle. Total exercise was done following partial Design of Experiments (DOE). EGR % has kept unaltered.
Technical Paper

Optimization of Brake Pedal Feel and Performance for Dual Air Over Hydraulic System on Light Commercial Vehicles

2010-10-05
2010-01-1888
In current scenario, Light Commercial Vehicle segment (7 ton - 9.6 ton) is gradually experiencing a shift in the focus from being just a goods carrier to a vehicle which is developed to take care of driver's safety and comfort in terms of better ergonomics and aesthetics. As compared to their conventional counterparts the new generation Light Commercial Vehicles are better equipped and tuned to cater to the changing needs of the consumers. In view of this, refinement at the sub system level is becoming far more critical. On the same lines, the present work discusses a refined brake system for Light Commercial Vehicles where the conventional pneumatic system is replaced with Dual Air Over Hydraulic (DAOH) to achieve cost and weight advantages without compromising on its performance. However, during the development process, a lot of issues were observed with respect to the braking performance and the brake pedal feel.
Technical Paper

Novel Technique to Address the Humming Noise with Pulley Driven Hydraulic Power Steering Pump on Light Commercial Vehicles

2021-09-22
2021-26-0308
In the current customer centric automotive market, NVH is one of the prime focus for the automotive industry. Almost all light commercial vehicles in the market are with hydraulic power steering system. Hydraulic power steering pump is heart of the steering system which circulates the hydraulic oil to steering gear for assisting the driver. One of the NVH problem which is inevitable with the hydraulic vane pump is humming noise and this is perceived as an irritant by end user. This paper describes a novel technique for reducing the humming noise which is perceived at driver ear level. Base vehicle level objective measurements is carried out to set the acceptance criteria. Existing design is optimized as per CAE iterations and vehicle updated with the multiple solutions and objective measurements are recorded. Driver ear level noise reduction upto 4 dB(A) perceived which meets acceptance criteria.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Modelling of Internal Manifold Flow Distribution in PEMFC

2021-09-22
2021-26-0340
In a Polymer Electrolyte Membrane Fuel Cell (PEMFC) uniform reaction rate is very crucial to obtain maximum performance and to maintain the life of the cells. In PEMFC stack manifold plays an important role in maintaining uniform flow distribution of reactants (hydrogen, air and coolant) to the cells. Many studies have been carried out for examining the effect of manifold on flow distribution and pressure drop. Most studies are limited to small scale level (5 to 10 kW stack). This paper describes large scale fuel cell stack manifold design, flow distribution and pressured contours which is suitable for automotive vehicles (30 to 50 kW). The design consists of simplified scaled up fuel cell stack with cells connected in the series. Modelled the effect of internal manifold geometry of the fuel cell stack on pressure and flow distribution to the cells.
Technical Paper

Micro Hybrid Battery Management - A Novel System to Augment Engine Restart Reliability and Battery Life

2012-04-16
2012-01-0791
The micro hybrid system, also known as the engine stop start system, has recently gained prominence world over due to its considerable fuel saving potential and relatively low costs. In spite of being a relatively non-complex function, the stop start system works hand-in-hand with a wide range of vehicle systems and components, specially the starting system and the battery. Frequent idle stop periods during city driving conditions can result in excessive battery discharge and gradually lead to loss of engine restartability. Increased number of charging and discharging cycles tend to reduce the life of the battery significantly. Hence it is very essential that the micro hybrid vehicles have a system in place that monitors and maintains the battery status within its operating limits.
Technical Paper

Methodology to Quantify the Undesirable Effects of the Localized Inefficiency of Heat Pick-Up in Suction Line on an Automotive Air Conditioning System

2020-08-18
2020-28-0036
The automotive application places very special demands on the air conditioning system. As is the case with any other process, system efficiency is very important and the automotive air-conditioning application is no exception. While the characteristics of all the major components in the air conditioning system like compressor, condenser, evaporator and blower contribute to overall system efficiency, localized inefficiencies do play a part and so must be kept to a minimum, especially in this day and age when extra emphasis is being laid on sustainability. One such phenomenon that contributes to the system inefficiency is heat pick-up in suction line. Since the temperature at the evaporator-outlet is quite lower than ambient and also its surroundings (steering system pipes and hoses, engine, air intake pipes and so on), the refrigerant picks up heat as it moves along the suction line up to the compressor inlet. This heat pick-up is detrimental to the overall system performance.
Technical Paper

Methodology to Derive RLD Based Durability Test Schedule for Gearbox Oil Seals

2021-09-22
2021-26-0461
Oil seal leakage is one of the major failure mode in gearbox / transaxle. Oil seal failures can be due to various reasons like high temperature, insufficient lubrication, failure due to external environment, incorrect fitment etc. Major reason for oil seal failure is insufficient oil flow inside gearbox when vehicle is running on gradient for long duration. When vehicle is running in hilly region, transmission will get incline leading to oil deficiency at one half of the transmission. Oil seal in this location will not get sufficient lubrication and will run dry. Also, there will be rise in local temperature at seal lip to shaft interface leading to failure of oil seal lip. Subsequently, oil leakage from transmission will start from this location when vehicle is running in different terrain. Due to continuous seepage, oil quantity in the transmission will get reduced and may lead to gear failure or seizure of bearing.
Technical Paper

Methodology for Measurement of Inherent Driveline Frictional Force for a Vehicle in Coasting Mode

2009-04-20
2009-01-0416
Today, with the introduction of Euro-III engines it is possible to achieve almost zero fuel consumption in coasting mode. This means more the distance covered in coasting mode better will be the overall fuel economy of the vehicle. In turn, distance covered by the vehicle in coasting mode depends on the driveline frictional losses i.e. for a particular moving inertia of a vehicle higher the inherent driveline frictional loss lesser will be the distance negotiated by the vehicle. The proposed methodology has been established to determine this inherent frictional force component acting all across the driveline while the vehicle is run in coasting mode under no-load condition. The application of this methodology is limited to vehicles with manual transmission.
Technical Paper

Machine Learning based Operation Strategy for EV Vacuum Pump

2021-09-22
2021-26-0139
In an automotive braking system, Vacuum pump is used to generate vacuum in the vacuum servo or brake booster in order to enhance the safety and comfort to the driver. The vacuum pump operation in the braking system varies from conventional to electric vehicles. The vacuum pump is connected to the alternator shaft or CAM shaft in a conventional vehicle, operates continuously at engine speed and supplies continuous vacuum to the brake servo irrespective of vacuum requirement. To sustain continuous operation, these vacuum pumps are generally oil cooled. Whereas in electric vehicles, the use of a motor-driven vacuum pump is very much needed for vacuum generation as there is no engine present. Thus, with the assistance of an electronic control unit (ECU), the vacuum pump can be operated only when needed saving a significant amount of energy contributing to fuel economy and range improvement and emission reduction.
Technical Paper

Investigation of Frequent Pinion Seal and Hub Seal Leakages on Heavy Commercial Vehicles

2010-10-05
2010-01-2015
The automotive sector is going through a phase of stiff competition among various Original Equipment Manufacturers for increasing their profitability while ensuring highest levels of customer satisfaction. The biggest challenge for such companies lies in minimizing their overall cost involving investments in Research and Development, manufacturing, after sales service and warranty costs. Higher warranty costs not only affect the net profit but in turn it also affects the brand image of the company to a large extent in the long run. An effort is made here to target such warranty costs due to frequent tail pinion and hub seal leakages on single reduction/hub reduction axles of Heavy Commercial Vehicles in the field. A preliminary study involving the severity analysis of such failures is followed by a step by step investigation of these failures.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
X