Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Steering Linkage Induced Vehicle Pull during Straight Line Braking

2012-09-24
2012-01-1916
The vehicle pull (sideways) is a complex outcome of many parameters in an automobile vehicle. This is mainly due to steering, suspension, brake, wheels and chassis parameters. The road conditions like road camber also plays an important role in vehicle pull behavior. All efforts are put in design and manufacturing processes to maintain controlled vehicle pull in normal driving condition. Even though normal vehicle pull seems to be in acceptance limit (subjectively), its intensity increases many folds at the time of harsh braking. In these kind of panic situations where driver firmly holds on the steering wheel, it is expected that the vehicle should stop without deviating too much sideways from its intended straight line path to avoid any kinds of accidents. This work is an outcome of systematic study carried out to understand the root cause of brake pull as a field complaint on current production vehicles and adopting best possible solutions to minimize the brake pull.
Journal Article

Ride and Comfort Measurements - A Challenge of Subjective and Objective Correlation

2021-09-22
2021-26-0445
Traditionally, vehicle ride and comfort is evaluated, subjectively as well as objectively. Based on the outcome of subjective and objective tests, it is refined by optimizing primary suspension system, secondary suspension system, seating system, rubber bushings, frame and BIW for mass, stiffness, damping, geometry etc. Many a time subjective assessment results stands in contradiction to the objective assessment results; emphasizing need for having good correlation between subjective and objective test results. In such cases, it is ambiguous to decide suitable design refinement action and can lead to no improvement situation. Hence, it is essential to have concurring test procedures for subjective and objective ride evaluation. This paper describes a novel methodology to address the above said challenge. There are defined set of test events and measurement data points to be used in subjective and objective testing.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Optimization of Off-Road Mobility and Handling by Anti-Roll Bar Deletion and Shock-Up Tuning on Military Vehicle: A Case Study

2010-10-05
2010-01-1915
A 4t off-road military application vehicle was offered to the customers for assessment. During the evaluation adverse feedback of 1) harsh ride in off-road terrain, particularly during hump-crossing and 2) issues during high mobility were reported. Vehicle configuration was front and rear rigid axle suspension with leaf spring anti-roll bar, 4×4 and all terrain tyres. Vehicle application was “on-road” [GS (General-services)], as well as “off-road” (Reconnaissance purpose). The feedback was critically analyzed on the vehicle with the simulation of field conditions. Since the vehicle was still under customer evaluation, solution for the feedback required was quick and within boundary condition (maximum possible allowable limits of modification) of no major change in the suspension design as it was affects homologation cycle. Present paper describes the detailed analysis of the influence of each parameter on system.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Methodology to Derive RLD Based Durability Test Schedule for Gearbox Oil Seals

2021-09-22
2021-26-0461
Oil seal leakage is one of the major failure mode in gearbox / transaxle. Oil seal failures can be due to various reasons like high temperature, insufficient lubrication, failure due to external environment, incorrect fitment etc. Major reason for oil seal failure is insufficient oil flow inside gearbox when vehicle is running on gradient for long duration. When vehicle is running in hilly region, transmission will get incline leading to oil deficiency at one half of the transmission. Oil seal in this location will not get sufficient lubrication and will run dry. Also, there will be rise in local temperature at seal lip to shaft interface leading to failure of oil seal lip. Subsequently, oil leakage from transmission will start from this location when vehicle is running in different terrain. Due to continuous seepage, oil quantity in the transmission will get reduced and may lead to gear failure or seizure of bearing.
Technical Paper

Identification of Gear Shift Quality as a Key Attribute in Commercial Vehicle Development

2017-11-27
2017-01-7011
Indian automotive market has grown extremely competitive in the recent past. In order to meet the ever growing expectations of the customers, automobile manufacturers are compelled to offer their products under superior quality with supreme comfort. Customers wish of high levels of tactile comfort in the cabin compartment and effortless operation of peripherals will result in negligible fatigue and a pleasant drive, needs to be duly fulfilled. One has to focus more on Gear shift lever and Steering wheel, which are being the most sensitive tactile points in an automobile. The gear shift lever knob is frequently used and significantly influences the perception of the shift comfort for a driver during actual vehicle application.
Technical Paper

Grit Blasting on Synchronizer - To Resolve Early Crashing Complaint

2017-06-05
2017-01-1769
In today’s automobile market, most OEMs use manual transmission for cars. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gears can result into customer dissatisfaction and will affect the brand image. Synchronizer is a vital subsystem for precise gear shifting mechanism. Based on vehicle application selection of synchronizer for given inertia and speed difference is a key factor which decides overall shift quality of gearbox. For more demanding driver abuse conditions like skip shifting, conventional brass synchronizers have proved inadequate for required speed difference and gear inertia, which eventually results into synchronizer crashing and affects driving performance. To increase synchronizer performance of multi-cone compact brass synchronizer, a ‘Grit blasting process’ has been added. These components tested with an accelerated test plan successfully.
Technical Paper

Evaluation of Ferritic Stainless Steel Performance in Exhaust Environment

2022-10-05
2022-28-0344
In current scenario, there is trend to use stainless steels in place of carbon steels and aluminized carbon steels for Exhaust application. In response to changing regulatory requirements and durability performance requirements of exhaust systems, the ferritic stainless steels are proven to be best suited for the purpose. There are multiple ferritic stainless steels available as options for exhaust system. The material in an exhaust system is subject to heat, oxidation, corrosion and condensate. These environment condition demands that exhaust material should possess high temperature corrosion and oxidation resistance along with required mechanical performance such as vibration and thermo-mechanical load cycles. This work is an attempt to develop simulated test methods for corrosion and thermal environment and evaluate performance of commonly used ferritic stainless steels.
Journal Article

Development of Generic Frame Testing Methodology by Synthetic Drive File Generation Technique

2021-09-22
2021-26-0444
Frame is one of the vital part of Light & Heavy Commercial vehicle which holds all the parts and testing the frame is not a cost effective as the complete vehicle assembly needs to be tested as the individual testing of frame is not formulated for testing. In the development stage of the vehicle we always seek for a quick, cost effective and reliable methodology so that any modification can be made by identifying the failures. In this paper we have addressed this problem by developing a generic frame test methodology by which the frame can be tested in the preliminary stage of development in a cost effective way and reliable way. The Multi Body Dynamics Simulation was carried out and rig was designed comprising of servo hydraulic actuators. The frame was instrumented to acquire the Field, Event and Torture track data for the formulation and verification of the synthetic drives.
Technical Paper

Design for Cabin Tilting System Employing Single Torsion Bar Using Taguchi Optimization Method

2012-09-24
2012-01-2032
Designing a cabin tilting system for Light Commercial Vehicles using a single torsion bar becomes challenging considering the operator safety and stringent design weight targets. Performance of a good tilting system entirely depends on cabin mass and location of centre of gravity with respect to (w.r.t) to tilting pivot point. Cabin Mass and COG location are very difficult to estimate while designing a new cabin as it is dependent on the maturation of all other cabin aggregates and also the accessories added by the customer. Incorporation design parameter changes like increasing cab tilting angle and increasing torsion bar length, in the later stages of product development, becomes expensive. The objective of this paper is to come up with an optimum design of a single torsion bar tilting employing “Taguchi optimization” for deciding the optimum levels of control factors, which ensures desired performance (i.e tilting effort vs.
Technical Paper

Design Methodology of New Generation Noiseless Antiroll Bar Bushes for Car Suspension

2015-01-14
2015-26-0077
In this paper, design methodology of antiroll bar bush is discussed. Typical antiroll bar bushes have slide or slip mechanism, to facilitate the relative motion between ARB and bush. Inherently, this relative motion causes wear and noise of bush. To eliminate stated failure modes, the next generation bushes have been developed, which are using torsion properties instead of slip function. These bushes are already being used in various vehicles. This paper focuses on developing the simple mathematical model, design approach and optimization of ARB bushes. Also, comparison study is presented exploring, the differences and design criteria's between conventional and new generation anti-roll bar bushes.
Technical Paper

Derivation of Test Schedule for Jerk Test on Manual Gearbox Using Road Load Data

2019-01-09
2019-26-0347
Shock loads/Jerk is a major cause of gearbox failure which occurs during abusive driving condition. In passenger car torque spikes are experienced by the transmission during launch/sudden clutch release events on flat road or off-road. Whereas, in case of commercial vehicle torque spikes are generated while operation in mines and off-road application especially in tipper vehicles. Torque spikes experienced by the gearbox can lead to gear failure, gear slippage and structural failure of housing. Research has been done till now to improve the design of gearbox to address such failures. However, with increased focus on transmission downsizing and improved vehicle performance (by weight reduction and more powerful engine) it is necessary to have optimum design to meet transmission life. This paper discuss the test setup and methodology used to simulate the torque spikes on test bench. To develop the test procedure huge data was collected on commercial vehicles.
Journal Article

Corrosion Simulation Tests: Analysis and Improvement of Corrosion Resistance for Automotive Components

2013-04-08
2013-01-0335
Corrosion testing and simulation has played a critical role in the development of corrosion resistant automobiles. Much has been learned over a period of time with respect to the automotive corrosion protection and its assessment. A range of coatings and platings are being used in the automotive sector. In this field of application, designs are very complex and focus is on enhanced vehicle level corrosion protection, given the high corrosion warranty costs. The objective of the present study was to develop a electrochemical test method to rapidly and quantitatively screen the corrosion performance of automotive coating systems. The present study compares electrochemical results obtained using a linear polarization resistance (LPR) to results obtained via the standard ASTM B117 salt spray test. Salt spray tests were done on a separate series of these coating systems according to ASTM B117, and the results were ranked from 10 (excellent performance) to 1 (very poor performance).
Technical Paper

Comparative Analysis of Different Corrosion Test Cycles

2023-05-25
2023-28-1325
Corrosion in automotive industry is broadly categorized into cosmetic & perforation corrosion. Cosmetic corrosion comprises of superficial red rust which is deleterious to the overall aesthetic appeal of the vehicle but can be rectified. Perforation corrosion involves complete erosion of the panel, compromising structural integrity of the respective part. Perforation corrosion demands part replacement. In order to tackle this menace, automotive OEMs have formulated varied corrosion strategies in terms of selection of appropriate substrate, part design & surface protection scheme. Validation of various corrosion strategies become pivotal during the development phase of various parts and assemblies. Traditionally, Salt Spray Test (SST) has been used to determine corrosion life of materials/parts/assemblies. This test however does not simulate real-world conditions.
Technical Paper

A New Approach to Evaluate Wear on Automotive Leaf Spring Suspension Bushes

2010-10-05
2010-01-1906
Traditionally the bushes used for automotive suspension are tested by methods which either don't address the environmental conditions including dust or mud, which convert a 2-body wear condition to 3-body wear condition prevailing in the field or not representative of the complete load bearing area of the bushes coming in contact with the pin. To address the above issues, a novel method of testing has been designed to take care of the loading type, environmental conditions and load bearing area of the bushes to simulate the field conditions.
Technical Paper

A Closed System Simulation based Methodology to Accomplish Advance Engine Calibrations towards CAFE

2021-09-22
2021-26-0352
The automotive engineering fraternity is facing tremendous challenges to improve fuel economy and emissions of the internal combustion engine. The stringent CAFÉ standards for CO2 emissions are expected to become further demanding as time progresses. Indian OEM engineering experts have been considering various technology options to improve vehicle fuel economy. However, the time and costs associated with the development of these strategies and technologies remains a point of major concern and challenge. The potential of a technology to reduce fuel consumption can be estimated in three basic ways. One approach involves developing an actual prototype engine and vehicle with the technologies under evaluation, performing the actual measurements. Some variability from test to test is although expected, this method is the most accurate but time consuming and very expensive.
Technical Paper

1D Tire Model Parameter Synthesis for Vehicle Handling Targets Assessment “A Strategy of Optimization and Evaluation of Tire Math’s”

2019-01-09
2019-26-0361
Handling performance of a vehicle is a key characteristic determining the response of vehicle under different operating scenarios. An insight into these vehicle-handling characteristics at early stage can be extremely useful in the design and development process. Tire characterization and tuning is important and mandatory to scrutinize each functional and individual parameter of tire. Tire force and moment data is having a significant effect in vehicle handling. Segregation of tire parameter, which is contributing vehicle-handling performance, helps to identify and perform optimization for improvisation. The main objective of this study is development and integration optimized 1D tire model into multibody dynamics model of the vehicle to observe various vehicle compliances towards its handling performance target.
X