Refine Your Search

Topic

Author

Search Results

Technical Paper

Transient Hot Shut Down, CFD Simulation Technique for Underhood Thermal Management

2020-08-18
2020-28-0032
During initial vehicle development stages thermal robustness is of prime importance. Vehicles are required to be validated for different drive cycles based on users driving patterns and also geographical road load database. Numerical simulations play key role in identifying critical thermal issues for different systems well in advance before physical validation. Hot shut down is one such case where thermal soak phenomenon plays vital role from thermal robustness point of view and there is a need to address this phenomenon using Computational Fluid Dynamics (CFD), which in turn will reduce the development time / testing efforts considerably. This condition is of utmost importance especially when vehicle is moving at higher gradients (uphill sections). In these critical conditions, hot engine compartment starves for cooling airflow despite the fact that fan is operating at maximum speed. The sudden stoppage of vehicle after this high thermal load is known as hot shut down.
Technical Paper

Thermal Mapping of HPAS System Based on Steering Kinematic and Tire-Road Contact Patch Sliding Model

2019-01-09
2019-26-0225
In hydraulic power assisted steering (HPAS) system higher steering oil temperature can cause deterioration of oil reservoir, thermal failure of pump/valves and can diminish system performance. Thermal analysis is performed for HPAS system architecture development in order to maintain steering oil temperature within design limits for optimal performance & increased life of HPAS steering system. In present study mathematical model of HPAS system consisting of steering pump, flow and pressure control mechanism, rotary valve, steering circuit pipes and hoses, thermal interaction with ambient is developed. The model is able to predict steering torque-hydraulic pressure dynamics of HPAS system as per design. Developed HPAS system model is integrated with steering kinematic and uniquely developed tire-road contact patch sliding model for estimating non-linear rack force behavior at higher steering angle.
Technical Paper

Systematic Approach for Optimizing Tailgate Stoppers and Its Location to Prevent Squeak and Rattle

2021-09-22
2021-26-0285
Tailgate stoppers play vital role in exerting preload on the Tailgate latch mechanism and also restrict the relative motion of the Tailgate against vehicle Body in White (BIW). These stoppers act as over-slam dampeners and reduce the transmissibility of vibrations thereby reduce the risk of Squeaks & Rattles (S&R) noises. S&R noises from Tailgate are most annoying to the rear passengers in the vehicle and are recurring in nature. Preventing these issues during design is a challenging task. S&R risk simulations enable us to conduct virtual Design of Experiments (DOEs) and arrive at optimal solutions. This approach helps in reducing the cost of the design changes that are required in the physical prototype at the later stages of product development and save time. The risk evaluation in the simulations is based on the relative displacement at the interfaces of two components.
Technical Paper

Steering Linkage Induced Vehicle Pull during Straight Line Braking

2012-09-24
2012-01-1916
The vehicle pull (sideways) is a complex outcome of many parameters in an automobile vehicle. This is mainly due to steering, suspension, brake, wheels and chassis parameters. The road conditions like road camber also plays an important role in vehicle pull behavior. All efforts are put in design and manufacturing processes to maintain controlled vehicle pull in normal driving condition. Even though normal vehicle pull seems to be in acceptance limit (subjectively), its intensity increases many folds at the time of harsh braking. In these kind of panic situations where driver firmly holds on the steering wheel, it is expected that the vehicle should stop without deviating too much sideways from its intended straight line path to avoid any kinds of accidents. This work is an outcome of systematic study carried out to understand the root cause of brake pull as a field complaint on current production vehicles and adopting best possible solutions to minimize the brake pull.
Technical Paper

Simulink Model for SoC Estimation using Extended Kalman Filter

2021-09-22
2021-26-0382
State of Charge (SoC) estimation of battery plays a key role in strategizing the power distribution across the vehicle in Battery Management System. In this paper, a model for SoC estimation using Extended Kalman Filter (EKF) is developed in Simulink. This model uses a 2nd order Resistance-Capacitance (2RC) Equivalent Circuit Model (ECM) of Lithium Ferrous Phosphate (LFP) cell to simulate the cell behaviour. This cell model was developed using the Simscape library in Simulink. The parameter identification experiments were performed on a new and a used LFP cell respectively, to identify two sets of parameters of ECM. The cell model parameters were identified for the range of 0% to 100% SoC at a constant temperature and it was observed that they vary as a function of SoC. Hence, variable resistance and capacitance blocks are used in the cell model so that the cell parameters can vary as a function of SoC.
Technical Paper

Simulation of Intake System for Two Cylinder Naturally Aspirated In-Direct Injection Engine

2004-09-27
2004-32-0030
This paper summarizes the approach towards the process of computational simulation of the intake system and its experimental investigation. It is an important aspect to improve breathing of the diesel engines for performance, torque smoothening and emissions. This can be achieved by optimizing intake system parameters such as plenum volume, diameters, length of ports & runners, etc., which directly correlates the volumetric efficiency, thereby the performance of the engine. Keeping the objective of improving volumetric efficiency to achieve low-end performance, the intake system design optimization has been done on a twin cylinder, four cycle, compression ignition, In-Direct Injection (IDI) engine. For the simpler intake system, the primary pipe length & diameter can be calculated by mathematical formula applying Helmholtz Resonator principle. But, for a complex intake system, simulation software is used here.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Technical Paper

Severe Plastic Deformation Treatment for Geometry and Residual Stress Modification of Weld Toe

2023-05-25
2023-28-1356
Structural automotive components are subjected to fatigue damage under cyclic stresses and strains. The fatigue damage initiates at stress levels lower than the elastic limit of the material and results in cracks. The Initial fatigue cracks are difficult to detect, such cracks can develop rapidly and cause sudden and brittle failure in structures. Many structural automotive components are fabricated involving weld induced local conditions such as geometry of weld toe and localized tensile residual stresses. These conditions are favorable for initiation of fatigue damage at weld toe. In current work, sever plastic deformation (SPD) which is based on high frequency impact treatment using ultrasound energy was applied on weld toe of representative weld joints. The effect of SPD on weld toe geometry modification, microstructure and residual stresses were evaluated. Microscopic and X-ray diffraction techniques were used to study the effects of SPD.
Technical Paper

Rubber Tire Characterization Using Experimental and Computational Methods in Crash Applications

2015-01-14
2015-26-0170
Tire plays an important role in frontal impacts as it acts as a load path to transfer loads from barrier to side sill or rocker panels of passenger vehicles. In order to achieve better correlation and more reliable predictions of vehicle crash performance in CAE simulations, modeling techniques are continuously getting refined with detailed representation of vehicle components in full vehicle crash simulations. In this study, detailed tire modeling process is explored to represent tire dynamic stiffness more accurately in frontal impact crash simulations. Detailed representation of tire internal components such as steel belts, body plies, steel beads along with rubber tread and sidewall portion have been done. Passenger car tubeless radial tire was chosen for this study. Initially, quasi-static tensile coupon tests were carried out in both longitudinal and lateral direction of tread portion of tire.
Technical Paper

Regulatory Norms and Effect on Transmission Component Validation

2021-09-22
2021-26-0460
With the advent of BS VI regulations, automotive manufacturers are required to innovate the powertrains, fuel systems, exhaust and its after treatment systems to meet the regulatory requirements. The exhaust regulations can be met either by reducing the exhaust gases being generated by the engine (attacking the source) or by treating the exhaust gases in after treatment devices. The choice of the opted system varies with the manufacturer. The after-treatment devices such as catalytic converters are generally mounted in the engine compartment to take advantage of high temperature of exhaust gases to yield the reactions. Such an arrangement imposes a lot of thermal load on the peripheral components such as gearshift cables, bearings, oil seals, driveshafts etc. Thermal shields or thermal sleeve are used to address thermal issue and to protect transmission components.
Technical Paper

Reduction in Human Effort in Shifting and Selection Forces in Manual Transmission system

2019-01-09
2019-26-0366
Transmission system is important part of automobile. In the current era of automobile, there are two types of gear shifting mechanism: manual and automatic. Manual gear shifting mechanism is complex and require much effort for shifting and selection of gear so to surmount much effort by kinematic analysis of linkages, joints ergonomically. By changing these parameters in gear shifting mechanism it gives flexibility and less effort for shifting and selection of gear. It also reduce feasibility of error of shifting and selection of gear. Transmission system is modeled in CREO 2.0 and measuring and data analysis of the shift and selection forces of gear was done with the load sensor shown in Figure 6 and programming was done in LABVIEW 2015. The final cause of this technical paper is to decrease physical effort by driver for shifting and selection of gear.
Technical Paper

Prescriptive Modeling, Simulation and Performance Analysis of Mild Hybrid Vehicle and Component Optimization

2015-01-14
2015-26-0010
Reckoning today's environmental rules, legislative regulation and market requirements- the automotive industry of late has witnessed an increased vigor and enthusiasm by auto makers towards electrification of vehicles across all platforms in a bid to improve fuel economy and performance. Hybridization of a vehicle often involves the use of expensive high performance motors and large battery packs. However due to the challenges associated with the packaging of bulky battery and motor systems in existing drive train, mild hybrid systems have been preferred over strong or full hybrids especially in current production models as they don't entail any major change in architecture and the reduced battery size, both of which provide for easier packaging of components.
Technical Paper

Prediction and Resolution of Vehicle In-Cab Noise due to Powertrain Induced Excitations

2019-01-09
2019-26-0177
Vehicle NVH is one of the critical performance quality parameter and it consists of vibration levels at tactile points and noise levels at ear locations for different vehicle running conditions. There are many sources of noise and vibration in a vehicle, and powertrain is one of the main source. Therefore, it is important to understand and resolve powertrain induced noise and vibration issues at early design stage with efficient simulation techniques. The work presented here deals with the use of systematic CAE approach for prediction and resolution of structure borne in-cab noise due to powertrain excitations. During NVH testing of SUV vehicle, boom noise is observed at low frequency. Detailed full vehicle level simulation model consisting of vibro-acoustic trimmed BIW, front and rear suspension, and driveline with powertrain modal model is built.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Optimizing an Automotive HVAC System for Enhancement of Acoustic Comfort

2021-09-15
2021-28-0147
The Indian automotive industry is going through a rapid transformation phase. Regulatory emission norms such as, migration from BSIV to BSVI engine, increased adoption of μ-hybrid, full electric and autonomous cars are examples of such rapid transformation. The upgradation of internal combustion engines for compliance with new regulatory norms (e.g., from BSIV to BSVI) has caused a significant change in the automotive acoustic performance. As the powertrain system are being upgraded and getting quieter, the on-board Heating, Ventilation and Air-Conditioning system (HVAC) system emerges as one of the prominent noise sources which strongly influences overall refinement levels inside the cabin. This in turns is affecting overall feeling of passenger’s comfort. The HVAC system of an automobile is a compact and yet a complex system designed to provide thermal comfort inside the car cabin.
Technical Paper

Optimization of State Machine Architecture for Automotive Body Control

2016-02-01
2016-28-0233
The OEM's aim is to reduce development time and testing cost, hence the objective behind this work is to achieve a flexible stateflow model so that changes in the application during supply chain or development, on adding/deleting any switches, varying timer cycle, changing the logic for future advancements or else using the logic in different application, would end in minimal changes in the chart or in its states which would reflect least changes in the code. This research is about designing state machine architecture for chime/buzzer warning system and wiper/washer motor control system. The chime/buzzer stateflow chart includes various input switches like ignition, parking, seat belt buckle, driver door and speed accompanied with warning in the form of LED, lamp and buzzer. The logic is differentiated according to gentle and strong warning. Various conditions and scenarios of the vehicle and driver are considered for driver door and seat belt which is resolved in the chart.
Technical Paper

Optimization of Off-Road Mobility and Handling by Anti-Roll Bar Deletion and Shock-Up Tuning on Military Vehicle: A Case Study

2010-10-05
2010-01-1915
A 4t off-road military application vehicle was offered to the customers for assessment. During the evaluation adverse feedback of 1) harsh ride in off-road terrain, particularly during hump-crossing and 2) issues during high mobility were reported. Vehicle configuration was front and rear rigid axle suspension with leaf spring anti-roll bar, 4×4 and all terrain tyres. Vehicle application was “on-road” [GS (General-services)], as well as “off-road” (Reconnaissance purpose). The feedback was critically analyzed on the vehicle with the simulation of field conditions. Since the vehicle was still under customer evaluation, solution for the feedback required was quick and within boundary condition (maximum possible allowable limits of modification) of no major change in the suspension design as it was affects homologation cycle. Present paper describes the detailed analysis of the influence of each parameter on system.
Technical Paper

Occupant Injury Severity Prediction in Road Traffic Accidents Using Machine Learning Techniques

2024-01-16
2024-26-0011
The automotive industry has achieved remarkable advances in passenger car safety systems to mitigate the risk of injuries and fatalities caused by road accidents. However, to further improve vehicle safety, it is essential to have a deeper understanding of real-world accidents and the true safety benefits of various safety systems in the field. This requires a framework to evaluate the effectiveness of safety systems in reducing occupant injury and fatalities. This study aims to use machine-learning techniques to predict occupant injury severity by considering accident parameters and safety systems, using the Road Accident Sampling System - India (RASSI) real-world accident data. The RASSI database contains comprehensive accident data, including various factors that contribute to occupant injury. The study focused on fifteen accident parameters that represent key aspects of crash scenarios such as vehicle type, accident type, vehicle speed, and occupant details.
Technical Paper

Multi-Axial Road Simulation for Component Level Validation of Engine Mount Structure and Elastomer

2021-09-22
2021-26-0452
Today, reducing the vehicle development time is a very crucial task. In the early development stages, the limited time and few vehicle prototypes are available for validation. In such scenarios, durability validation of different design iterations of critical components like engine mounts, with respect to the real road usage is a challenge. Road simulation testing in a laboratory is a reliable approach to fatigue and durability tests for the evaluation of platforms, components and subassemblies. Durability evaluation of engine mount is, generally, performed either at assembly level, using multi-axial road simulation approach or at component level, using uniaxial sinusoidal load testing. The new testing approach here allows testing of engine mounts at component level using road simulation approach by applying multi-axial loads or deflections as per the real road usage conditions.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
X