Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Road Torque Data Collection

2019-01-09
2019-26-0289
The traditional method of collecting the Road Torque Data of a vehicle is by instrumenting and running the vehicle on different road terrains. Every time, physical testing becomes tedious & most challenging task due to unavailability of unit under tests, kind of resource required and so on. However, in view of response to the fast emerging technology & limit less competition, it has become mandatory to develop & launch products in market within no time. In recent times, there is increased demand for physical road torque data measurements for a vehicle program based on its application and different powertrain configurations, which clearly shows that unless we front load the data to design it is practically impossible to meet the deadlines. Each of these measurements cost and consumes valuable resources of the company in collecting and analyzing the data.
Technical Paper

Virtual Development of Optimum Twist Beam Design Configuration for a New Generation Passenger Car

2007-08-05
2007-01-3562
It is customary to select a twist beam rear suspension for front wheel driven small and medium range passenger cars. Besides better primary / secondary ride comfort, roll stiffness tuning ability, ease of assembly & good packaging solutions than the conventional semi trailing arm/ rigid axle suspensions, twist beam suspension system accentuate the concentration required in placing & orienting the cross beam to achieve certain imperative kinematical characteristics. In order to make the solutions of the required kinematical targets viable, it is vital to have the packaging space and stress concentration within yield limits given the weight & cost targets. This paper presents the work done on twist beam type suspension for a new generation entry level B-Class hatchback vehicle developed. To reduce the time consumed in validation of different design proposals a virtual validation process was developed.
Technical Paper

Simulation of Restart Gradability of a Manual Transmission Vehicle Using AVL-CRUISE

2013-10-14
2013-01-2516
1 With increasing fuel price, the power train size is on a downward trend. For Fuel Economy maximization, the engine capacity and reduction ratios are getting reduced. So gradability of a vehicle is becoming a trade off factor for the power train size finalization in a car. At the same time OEMs are working hard to maintain profitability by reducing development and operational cost and time. In this complexly competitive scenario in automobile manufacturing, simulation is gaining an upper hand over actual testing as simulation consumes lesser time and resource as compared to actual testing. This paper is aimed at developing a simulation technique for restart or stop and start gradability which is a very critical parameter for finalization of engine torque characteristics and power train configuration. The simulation is done on AVL-CRUISE software.
Technical Paper

Retained Newness of Commercial Vehicle Interiors

2024-01-16
2024-26-0188
Commercial vehicle are exposed to harsh environment conditions like dust, mud, wind, rain, extreme sun and winter throughout. Apart from white goods and other conventional loading these vehicles also used in applications which involve Handling of Dirty Loads, Construction Raw materials, Mining Industry etc. which leads to fast deterioration of Interiors. Also, in most cases drivers are not the owners. Hence due to high cost of Cleaning at dealerships and low Product maintenance awareness amongst Commercial Vehicle Users, on Road Washing & Cleaning by riverside is common practice which leads to early deterioration of Interior trims. This paper deals with the retention of newness of soft trim parts such as headliner, wall trims and carpets. Causes of product deterioration and attributes which influence newness like product appeal, NVH, perceived quality, environmental impact, geometry retention over time etc. have been discussed in detail.
Journal Article

Practical Approach to Develop Low Cost, Energy Efficient Cabin Heating for Extreme Cold Operating Environment

2011-04-12
2011-01-0132
In cold climatic regions (25°C below zero) thermal comfort inside vehicle cabin plays a vital role for safety of driver and crew members. This comfortable and safe environment can be achieved either by utilizing available heat of engine coolant in conjunction with optimized in cab air circulation or by deploying more costly options such as auxiliary heaters, e.g., Fuel Fired, Positive Temperature Coefficient heaters. The typical vehicle cabin heating system effectiveness depends on optimized warm/hot air discharge through instrument panel and foot vents, air directivity to occupant's chest and foot zones and overall air flow distribution inside the vehicle cabin. On engine side it depends on engine coolant warm up and flow rate, coolant pipe routing, coolant leakage through engine thermostat and heater core construction and capacity.
Technical Paper

Performance Driven Package Feasibility of Side Restraints Using KBE Tools

2013-01-09
2013-26-0027
Integrating safety features may lead to changes in vehicle interior component designs. Considering this complexity, design guidelines have to take care of aspects which may help in package feasibility studies that consider systems performance requirements. Occupant restraints systems for protection in side crashes generally comprise of Side Airbag (SAB) and Curtain Airbag (IC). These components have to be integrated considering design and styling aspects of interior trims, seat contours and body structure for performance efficient package definition. In side crashes, occupant injury risk increases due to hard contact with intruding structure. This risk could be minimized by cushioning the occupant contact through provision of SAB and Inflatable IC. This paper explains the methodology for deciding the package definitions using Knowlwdge Based Engineering (KBE) tools.
Journal Article

Perceptible Roll

2015-04-14
2015-01-1585
In case of design of passenger vehicles, one of the priorities is how the dynamics behavior shall be perceived by the vehicle occupants. One of many such handling parameters is the vehicle body roll, which is usually quantified by the vehicle's Steady State Roll Gradient. This number gives an indication of the rotation of the vehicle body in response to unit lateral force acting on the vehicle, as in the case of cornering. However it does not necessarily indicate the roll as sensed by a person seated inside it. A study showed that the subjective feel is not entirely dependent on roll gradient. In some cases the occupant may feel more confident and comfortable in a vehicle with a relatively higher roll gradient, or vice versa. In such cases, designing for roll gradient alone may not serve the purpose of secure and comfortable feel. To account for this discrepancy, a study was carried out to quantify the motion felt by the occupant.
Technical Paper

Optimization of Drum Brake System in HCVs Using Two-Way Coupled CFD Approach

2023-11-05
2023-01-1874
The brake systems are given top priority by automotive OEMs in the development of medium and heavy commercial trucks and buses, which can carry increased loads. When trucks and buses are travelling at high speeds or crossing downhill, during braking operations, the friction faces (brake drum and liner) experience a significant rise in temperature due to the conversion of kinetic energy into heat energy within seconds. This lowers the friction coefficient at the interface, resulting in distortions, thermal cracks, hub grease burning, and overheating. Drum brake system designs must be improved and optimized to dissipate more heat from the brake drum assembly and prevent brake failure. Nowadays advance transient numerical simulations assist in the design, development and optimization of the brake system to visualize 3D flow physics and temperature variations throughout the brake duty cycles. In the current study, different Cases of drum brakes to improve cooling efficiency are evaluated.
Technical Paper

Model-Based System Engineering Approach for Steering Feel Simulation for Passenger Vehicles

2021-09-22
2021-26-0400
The basic function of steering system is to control the direction of the vehicle. The driver applies effort on the steering wheel and receives feedback through the steering system as a result of tire to road interaction. This feedback consists of a haptic (force) feedback which is directly felt by the driver and it is termed as steering feel. Precise steering feel gives better driving experience and is decisive factor for customer to buy a vehicle as well as for OEMs in building brand image. Along with steering parameters, suspension and tire parameters also has significant impact on steering feel. In past, modelling of the steering system was done at component level or with simplified vehicle system. Such approaches had not given accurate results of steering feel metric and resulted in incorrect steering design parameter selection. In order to replicate actual vehicle characteristics, complex and detailed modelling of steering, tire and suspension subsystems is necessary.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Lubrication Evaluation of EV Transmission

2024-01-16
2024-26-0328
Advent of EV powertrain has considerable effect on transmission development activities as competed to regular ICE transmission. Conventional ICE transmission and the transmission for an e-powertrain differ on fundamental level. The conventional transmission has number of gear ratios, shift mechanism which enables the transmission to deliver a smooth power output as per demand from the driver. Whereas the e-powertrain transmission is mostly a single gear ratio transmission (reducer) which primarily depends on speed and torque variation from the motor to cater the driver requirement. Hence, the operating speeds of such e-transmissions can vary from 0 to 20000 rpm in both forward and reverse directions. Such a large speed variation as compared with conventional transmission calls for special attention towards the lubrication of internal components. High speeds and lower oil viscosities tend to disrupt the oil films in between contact surfaces causing metal to metal contact.
Technical Paper

Investigation and Reduction of Brake Squeal and Groan Noise

2015-09-27
2015-01-2687
Brake noise is one of the common complaints and an irritant not just for the vehicle occupants but equally for the passers-by. Brake noise is actually vibration that is occurring at a frequency that is audible to the human ear. This occurrence of brake noise like brake squeal (>1 kHz) and groan (<1 kHz) is often very intense and can lead to vehicle complaints. During a brake noise event, vehicle basic structure and suspension system components are excited due to brake system vibration and result in a resonance that is perceived in the form of a noise. Proposed work discusses an experimental study that is carried out on a vehicle for addressing concern regarding disc brake squeal and groan noise. Based on the preliminary inputs, vehicle level study was carried out in order to simulate the problem and objectively capture its severity.
Technical Paper

Hill Start Assistance Developed for Buses Equipped with AMT

2016-04-05
2016-01-1111
The AMT (Automated Manual Transmission) has attracted increasing interest of automotive researches, because it has some advantages of both MT (Manual Transmission) and AT (Automatic Transmission), such as low cost, high efficiency, easy to use and good comfort. The hill-start assistance is an important feature of AMT. The vehicle will move backward, start with jerk, or cause engine stalling if failed on the slope road. For manual transmission, hill-start depends on the driver's skills to coordinate with the brake, clutch and throttle pedal to achieve a smooth start. However, with the AMT, clutch pedal is removed and therefore, driver can’t perceive the clutch position, making it difficult to hill-start with AMT without hill-start control strategy. This paper discussed about the hill start control strategy and its functioning.
Technical Paper

Evaluation of Cabin Comfort in Air Conditioned Buses Using CFD

2014-04-01
2014-01-0699
The objective of the work presented in this paper is to provide an overall CFD evaluation and optimization study of cabin climate control of air-conditioned (AC) city buses. Providing passengers with a comfortable experience is one of the focal point of any bus manufacturer. However, detailed evaluation through testing alone is difficult and not possible during vehicle development. With increasing travel needs and continuous focus on improving passenger experience, CFD supplemented by testing plays an important role in assessing the cabin comfort. The focus of the study is to evaluate the effect of size, shape and number of free-flow and overhead vents on flow distribution inside the cabin. Numerical simulations were carried out using a commercially available CFD code, Fluent®. Realizable k - ε RANS turbulence model was used to model turbulence. Airflow results from numerical simulation were compared with the testing results to evaluate the reliability.
Technical Paper

Estimation of Gear Utilization and Durability Test Specifications through Virtual Road Torque Data Collection for Light Commercial Vehicles

2024-01-16
2024-26-0257
The automotive world is rapidly moving towards achieving shorter lead time using high-end technological solutions by keeping up with day-to-day advancements in virtual testing domain. With increasing fidelity requirements in test cases and shorter project lead time, the virtual testing is an inevitable solution. This paper illustrates method adopted to achieve best approximation to emulate driver behavior with 1-D (one dimensional) simulation based modeling approach. On one hand, the physical testing needs huge data collection of various parameters using sensors mounted on the vehicle. The vehicle running on road provides the real time data to derive durability test specifications. One such example includes developing duty cycle for powertrain durability testing using Road Torque Data Collection (RTDC) technique. This involves intense physical efforts, higher set-up cost, frequent iterations, vulnerability to manual errors and causing longer test lead-time.
Technical Paper

Energy Efficient Air Conditioned Buses

2015-01-14
2015-26-0044
This paper focuses on factors that enhance energy efficiency of air conditioning system on mid-sized, standard and premium buses with engine power from 125 to 280 HP. It covers aspects like light weighting of roof air conditioning system, usage of optimized ducting system with minimal resistance to blowers, deployment of rotary scroll compressor with fast idle control in place of reciprocating piston compressor. The scope of this paper covers AC compressors driven by main engine of vehicle/ bus, study related to auxiliary/donkey engine driven AC compressor is not considered. Context- In order to enhance fuel efficiency in buses an energy efficient air conditioning system should be deployed. This will lead to reduced parasitic load on the engine and translate into direct fuel saving.
Technical Paper

Digital Approach for Design of Modular, Scalable Futuristic Instrument Panel for Commercial Vehicle

2024-01-16
2024-26-0387
Road infrastructure in India is being upgraded at a rapid pace. Quality of life of people has also improved significantly in the last decade. Such trends have significantly impacted design of commercial vehicles and vehicular systems in the country. This paper deals with the design and development of a modern futuristic instrument panel for trucks. Methodology to arrive at product features and solutions which retain their novelty and appeal for a longer term has also been illustrated. Regulatory scenario, modularity, HMI, Perceived Quality, Driver Comforts, evolving technologies, trends and materials are some of the considerations which have discussed in detail. International benchmarks and customer requirement have been analyzed for setting Performance targets. A digital approach for evaluating these considerations evolved during the design and development process has been elaborated in detail.
Technical Paper

Development of Hydrogen Fuel Cell Bus Technology for Urban Transport in India

2019-01-09
2019-26-0092
Polymer Electrolyte Membrane Fuel Cell (PEMFC) technology is considered for automotive applications due to rapid start up, energy efficiency, high power density and less maintenance. In line with National Hydrogen Energy Roadmap of Govt. of India that aims to develop and demonstrate hydrogen powered IC engine and fuel cell based vehicle. TATA Motors Ltd. has designed, developed and successfully demonstrated “Low Floor Hydrogen Fuel Cell Bus” which comprises of integrated fuel cell power system, hydrogen storage and dispensing system. The fuel cell power system, converts the stored chemical energy in the hydrogen to DC electrical energy. The power generated is regulated and used for powering the traction motor. The development of fuel cell bus consists of five stages: Powertrain sizing as per vehicle performance targets, fuel cell stack selection and balance of plant design and development, bus integration, hydrogen refueling infrastructure creation and testing of fuel cell bus.
Technical Paper

Development of Cost Effective Footpad to Mitigate Lower Leg Injury During Anti Vehicle IED Blast

2013-04-08
2013-01-1246
Improvised Explosive Devices (IEDs) and Anti-Tank (AT) mines are a significant threat for military vehicles and their occupants. These explosive devices are designed for the destruction and damage of armored and other vehicles, by using them in battle fields on routes of army vehicles. The blast event results in effects like shockwave, fragments, fire, gases, blast overpressure as well as the vertical impulse load. A blast event affects occupants inside the vehicle in the form of various types of injuries (lower leg, spinal, chest, head etc) and trauma. The Lower leg is the foremost injured body region in a blast event. The term lower leg is used to designate the tibia, fibula and the foot/ankle complex in this paper. Detonations occurring under a vehicle produce high velocity floorboard flutter/deformation and transmit axial loads to lower leg and create injuries.
Technical Paper

Design of Cabin Suspension Characteristics of Heavy Commercial Vehicle

2008-04-14
2008-01-0265
In the commercial vehicle business, Tractor-trailer combination vehicles are mostly used for carrying heavy loads for longer distances. To improve operating economy of the vehicle by reducing turn around time, it becomes a necessity to have a better driving comfort level for the vehicles. In a Tractor-trailer combination vehicle, due to point load acting on the tractor, pitching effect on the cab is very dominant. To overcome this pitching effect, a fully suspended cabin (suspended at four points) has been designed in order to have better ride comfort as compared to the fixed cabin. This paper discusses some of the measures taken to reduce the overall cabin pitching effect on Tractor -trailer combination vehicles.
X