Refine Your Search

Topic

Search Results

Technical Paper

Structure Borne Noise and Vibration Reduction of a Sports Utility Vehicle by Body-Mount Dynamic Stiffness Optimization

2011-05-17
2011-01-1599
Among the key parameters that decide the success of a vehicle in today's competitive market are quietness of passenger cabin (in respect of both airborne and structure-borne noise) and low levels of disturbing vibration felt by the occupants. To control these values in body-on-frame construction vehicles, it is necessary to identify major transfer paths and optimize the isolation characteristics of the elastomeric mounts placed at several locations between a frame and the enclosed passenger cabin of the vehicle. These body mounts play a dominant role in controlling the structure-borne noise and vibrations at floor and seat rails resulting from engine and driveline excitations, and they are also a vital element in the vehicle ride comfort tuning across a wide frequency range. In the work described in this paper, transfer path tracking was used to identify root cause for the higher noise and vibration levels of a diesel-powered sports utility vehicle.
Technical Paper

Spot Weld Failure Prediction in Safety Simulations Using MAT-240 Material Model in LS-DYNA

2015-01-14
2015-26-0165
Spot welding is the primary joining method used in automobiles. Spot-weld plays a major role to maintain vehicle structural integrity during impact tests. Robust spot weld failure definitions is critical for accurate predictions of structural performance in safety simulations. Spot welds have a complex metallurgical structure, mainly consisting of fusion and heat affected zones. For accurate material property definitions in simulation models, huge number of inputs from test data is required. Multiple tests, using different spot weld joinery configurations, have to be conducted. In order to accurately represent the spot-weld behavior in CAE, detailed modeling is required using fine mesh. The current challenge in spot-weld failure assessment is developing a methodology having a better trade-off between prediction accuracy, testing efforts and computation time. In view of the above, cohesive zone models have been found to be very effective and accurate.
Technical Paper

Simulation Methodology Development for Vibration Test of Bus Body Structure Code AIS-153:2018

2024-01-16
2024-26-0249
A bus is integral part of public transportation in both rural and urban areas. It is also used for scheduled transport, tourism, and school transport. Buses are the common mode of transport all over the world. The growth in economy, the electrification of public transport, demand in shared transport, etc., is leading to a surge in the demand for buses and accelerating the overall growth of the bus industry. With the increased number of buses, the issue of safety of passengers and the crew assumes special importance. The comfort of driver and passenger in the vehicle involves the vibration performance and therefore, the structural integrity of buses is critically important. Bus safety act depicts the safety and comfort of bus operations, management of safety risks, continuous improvement in bus safety management, public confidence in the safety of bus transport, appropriate stakeholder involvement and the existence of a safety culture among bus service providers.
Technical Paper

Review on Laser Welding of High Strength Aluminium Alloy for Automotive Applications

2024-01-16
2024-26-0193
High strength aluminium alloys are an ideal material in the automotive sector leading to a significant weight reduction and enhancement in product safety. In recent past extensive development in the field of high strength steel and aluminium was undertaken. This development has been propelled due to demand for light weight automotive parts. The high strength to weight ratio possessed by Al alloy helps in reducing the total weight of the vehicle without effecting the overall performance, thereby increasing the fuel economy, and reducing the carbon emission level. Joining of high strength aluminium alloy is critical to develop durable automotive products. Joining of high strength aluminium alloy for mass production in automobile industry is a challenging task. Laser welding is recognized as an advanced process to join materials with a laser beam of high-power, high- energy density.
Technical Paper

Refined Driveline Isolation in Bus Vehicles

2024-01-16
2024-26-0205
NVH is of prime importance in buses as passengers prefer comfort. Traditionally vehicle NVH is analysed post completion of proto built however this leads to modifications, increases cost & development time. In modern approach physical validation is replaced by CAE. There are many sources of NVH in vehicle however this article is focused about the methodology to improve NVH performance of bus by analysing and improving the stiffness and mobility of various chassis frame attachment points on which source of vibrations are mounted or attached. In this study chassis frame attachment stiffness of Engine mounts and propeller shafts is focused.
Technical Paper

Performance Driven Package Feasibility of Side Restraints Using KBE Tools

2013-01-09
2013-26-0027
Integrating safety features may lead to changes in vehicle interior component designs. Considering this complexity, design guidelines have to take care of aspects which may help in package feasibility studies that consider systems performance requirements. Occupant restraints systems for protection in side crashes generally comprise of Side Airbag (SAB) and Curtain Airbag (IC). These components have to be integrated considering design and styling aspects of interior trims, seat contours and body structure for performance efficient package definition. In side crashes, occupant injury risk increases due to hard contact with intruding structure. This risk could be minimized by cushioning the occupant contact through provision of SAB and Inflatable IC. This paper explains the methodology for deciding the package definitions using Knowlwdge Based Engineering (KBE) tools.
Journal Article

Perceptible Roll

2015-04-14
2015-01-1585
In case of design of passenger vehicles, one of the priorities is how the dynamics behavior shall be perceived by the vehicle occupants. One of many such handling parameters is the vehicle body roll, which is usually quantified by the vehicle's Steady State Roll Gradient. This number gives an indication of the rotation of the vehicle body in response to unit lateral force acting on the vehicle, as in the case of cornering. However it does not necessarily indicate the roll as sensed by a person seated inside it. A study showed that the subjective feel is not entirely dependent on roll gradient. In some cases the occupant may feel more confident and comfortable in a vehicle with a relatively higher roll gradient, or vice versa. In such cases, designing for roll gradient alone may not serve the purpose of secure and comfortable feel. To account for this discrepancy, a study was carried out to quantify the motion felt by the occupant.
Technical Paper

Optimizing Steering Column Layout and UJ Phase Angle to Enhance Vehicle Dynamics Performance

2019-02-05
2019-01-5010
Vehicle dynamics is one of the most important vehicle attributes. It is classified into three domains, the longitudinal, vertical, and lateral dynamics. This paper focuses on optimizing the lateral vehicle dynamics which is driven by the straight ahead controllability and cornering controllability of the vehicle. One of the important parameters that dictates these sub-attributes is the steering ratio. Therefore, designing the right steering ratio is critical to meet the vehicle “specific” targets. Significant amount of work has been done by many researchers on variable steering ratio by implementing variable gear ratio (VGR) rack, active steering, and steer-by-wire systems. This paper discusses the methodology and considerations to optimize the steering ratio for a constant gear ratio rack by optimizing the steering column layout, viz., orientation and the phase angle in universal joints.
Technical Paper

Optimization of Air Intake System and Exhaust System for Better Performance of Turbocharged Gasoline Engine

2018-04-03
2018-01-1424
Gasoline engines with Multi point fuel injection (MPFI) technology are being developed with naturally aspirated and/or turbocharged engines. Wherein a MPFI and turbo charged combination engines have certain challenges during development stages. One of the important challenge is design of air intake and exhaust system. With MPFI turbocharged engine combination, the under bonnet heat management is crucial task for drivability. The heat management of air intake plays a vital role in drivability part therefore a design layout of air intake path is an important aspect. Drivability can be categorized as low end, mid-range and top end drivability. Turbocharged MPFI engines have a typical phenomenon of ‘Lag in response’ in the low-end region. This ‘Lag in response’ phenomenon at low-end drivability region can be overcome through optimization of air intake system and optimization of exhaust back pressure.
Technical Paper

New Pass-by Noise Regulatory Norms IS 3028:2023 (Part 2) - an Analysis of Acceleration and Noise Source Contribution

2024-01-16
2024-26-0199
Worldwide automotive sector regulatory norms have changed and become more stringent and complex to control environmental noise and air pollution. To continue this trend, the Indian Ministry of Road Transport is going to impose new vehicle exterior pass-by noise regulatory norms IS 3028:2023 (Part2) to control urban area noise pollution. This paper studies the synthesis of M1 category vehicle driving acceleration, dominant noise source, and frequency contribution in exterior PBN level. A vehicle acceleration analysis study was carried out to achieve an optimized pass by noise (PBN) level based on the vehicle’s PMR ratio, reference, and measured test acceleration data. Based on the analysis, test gear strategy was decided to achieve a lower PBN level. This strategy involved increasing the effective final drive ratio and optimizing engine calibration, resulting in improvement with acceleration in the ith gear.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

Estimation of Gear Utilization and Durability Test Specifications through Virtual Road Torque Data Collection for Light Commercial Vehicles

2024-01-16
2024-26-0257
The automotive world is rapidly moving towards achieving shorter lead time using high-end technological solutions by keeping up with day-to-day advancements in virtual testing domain. With increasing fidelity requirements in test cases and shorter project lead time, the virtual testing is an inevitable solution. This paper illustrates method adopted to achieve best approximation to emulate driver behavior with 1-D (one dimensional) simulation based modeling approach. On one hand, the physical testing needs huge data collection of various parameters using sensors mounted on the vehicle. The vehicle running on road provides the real time data to derive durability test specifications. One such example includes developing duty cycle for powertrain durability testing using Road Torque Data Collection (RTDC) technique. This involves intense physical efforts, higher set-up cost, frequent iterations, vulnerability to manual errors and causing longer test lead-time.
Technical Paper

Driveline Torsional Vibration Analysis and Clutch Damper Characteristics Optimization for reducing Commercial Vehicle Noise and Vibrations

2021-08-31
2021-01-1102
The automotive world has seen an increase in customer demands for vehicles having low noise and vibrations. One of the most important source of noise and vibrations associated with vehicles is the vibration of driveline systems. For commercial vehicles, the refinement of drivelines from NVH point of view is complex due to the cost and efficiency constraints. The typical rear wheel drive configuration of commercial vehicles mostly amplifies the torsional vibrations produced by engine which results into higher noise in the vehicle operating speed range. Theoretically, there are various options available for fine tuning the torsional vibration performance of the vehicle drive train. The mass moments of inertia and stiffness of the drivetrain components play significant role in torsional vibration damping, however, except minor changes to flywheel mass, it is hardly possible to change other components, subject to design limitations.
Technical Paper

Development of Accelerated Life Test Schedule for Rig Testing of Live Axles Based on Road Load Data and Its Correlation with Field

2018-04-03
2018-01-0099
Drive components of live axle undergoes different loading conditions during field usage depending upon terrain conditions, vehicle loading and traffic conditions etc. During vehicle running, drive components of axle experiences variable torque levels, which results in the fatigue damage of the components. Testing of these drive components of axle on test rig for endurance life is an imperative part of axle development, owing to limitations of vehicle testing because of time and cost involved. Similarly, correlating field failures with rig testing is equally critical. In such situation, if a test cycle is derived correlating the field usage, rig testing can be effectively used for accelerated life testing and reliability prediction of these components. An approach is presented in the paper wherein test cycle is derived based on the data collected on vehicle in the field under service road and loading conditions.
Technical Paper

Development & Calibration of a Rain-Light Sensor and Controller for Indian Market

2010-04-12
2010-01-0296
Modern vehicles complexity is increasing to meet the demands of user. Automatic wiper and headlamp activation system using rain light sensor, (RLS) is one of the popular customer requirement. RLS is a combination of an infrared rain sensor and an optical light sensor. The RLS and controller operate the front wiper once it detects rain droplets on the windscreen. It switches on the headlamps automatically when while vehicles enter in to the tunnel. During integration of a rain light sensor on a vehicle the following should be considered: customer usage pattern, environmental factors, light intensity, raining pattern and vehicle architecture limitations. This paper illustrates the methodology used calibrated a pre-developed rain light sensor for specific markets like India.
Technical Paper

Design of Cabin Suspension Characteristics of Heavy Commercial Vehicle

2008-04-14
2008-01-0265
In the commercial vehicle business, Tractor-trailer combination vehicles are mostly used for carrying heavy loads for longer distances. To improve operating economy of the vehicle by reducing turn around time, it becomes a necessity to have a better driving comfort level for the vehicles. In a Tractor-trailer combination vehicle, due to point load acting on the tractor, pitching effect on the cab is very dominant. To overcome this pitching effect, a fully suspended cabin (suspended at four points) has been designed in order to have better ride comfort as compared to the fixed cabin. This paper discusses some of the measures taken to reduce the overall cabin pitching effect on Tractor -trailer combination vehicles.
Technical Paper

Design Methods to Optimize the Performance of Controller Area Networks

2012-04-16
2012-01-0194
This literature is in the field of communication networks where different Electronic Control Units (ECUs) communicate with each other over Controller Area Network (CAN) protocol. Typically these types of CAN networks are widely used in automotive vehicles, plant automations, etc. This proposed method is applicable in all such applications where controller area network is used as backbone electrical architecture. This literature proposes a new method of CAN signal packing into CAN frames so that network bus-load is minimized so that more number of CAN signals can be packed and more number of ECUs can be accommodated within a CAN network. The proposed method also ensures that the age of each CAN signal is minimized and all CAN signals reach the intended receiving ECUs within their maximum allowed age. Typically network designers are forced to design and develop multiple sub-networks and network gateways to get rid of network bus-load.
Technical Paper

Challenges to Meet New Noise Regulations and New Noise Limits for M and N Category Vehicles

2013-01-09
2013-26-0107
New noise regulations, with reduced noise limits, have been proposed by UN-ECE. A new method which aims at representing urban driving of the vehicles more closely on roads is proposed and is considerably different from the existing one (IS 3028:1998). It is more complex; we also found that some of the low powered vehicles can not be tested as per this method. The paper proposes ways of improvement in the test method. The new noise reduction policy options will have a considerable impact on compliance of many categories of vehicles. Technological challenges, before the manufacturers, to meet all performance needs of the vehicle along with the cost of development will be critical to meet the new noise limits in the proposed time frame.
Technical Paper

Brake Groan Noise Investigation and Optimization Strategies for Passenger Vehicles

2021-09-22
2021-26-0301
Groan is a low frequency noise generated when moderate brake pressure is applied between the surfaces of the brake disc and the brake pad at a low-speed condition. Brake groan is often very intense and can cause large numbers of customer complaints. During a groan noise event, vehicle structure and suspension components are excited by the brake system and result in a violent event that can be heard and felt during brake application. The cause of noise is friction variation of stick-slip phenomenon between friction material and disc. Creep groan is the structure-borne noise that is related to dynamic characteristic of the vehicle. However, it has been mainly improved through friction material modifications in the past. In this paper, transfer path of creep groan noise was analyzed by means TPA and structural countermeasure to creep groan noise was suggested. This paper discusses the approach for prediction and mitigation of brake groan noise for passenger vehicles having disc brakes.
Technical Paper

A Study on Traction Battery Mounting Arrangements in Different EV Buses

2024-01-16
2024-26-0121
Adaption of EV powertrains in existing vehicle architecture has created many unique challenges in meeting performance, reliability, safety, ease of manufacturing & serviceability at optimum cost. Mounting of large size battery packs in existing vehicle architecture is one of them. Specific energy & the energy density of Lithium ion batteries are very lower compared to Diesel & Petrol, which requires high volume & weight for equivalent energy storage. For movement of many passengers and to ensure sufficient range EV buses typically needs large amount of energy and for storage of same bigger size battery packs are required. These large size batteries directly affect vehicle architecture, seating layout, ease of assembly & serviceability. Moreover the heavy mass of batteries directly influences vehicle dynamics & performance characteristics such as vehicle handling, roll & NVH. The most important consideration in design of EV vehicles in general and buses in specific is safety.
X