Refine Your Search

Topic

Author

Search Results

Technical Paper

“Test Methodology Development for Rig Level Validation of Light Weight Stabilizer Link of EV Bus Suspension”

2024-01-16
2024-26-0357
In the modern and fast growing automotive sector, reliability & durability are two terms of utmost importance along with weight & cost optimization. Therefore it is important to explore new technology which has less weight, low manufacturing cost and better strength. The new technology developed always seek for a quick, cost effective and reliable methodology for its design validation so that any modification can be made by identifying the failures. This paper presents the rig level test methodology to validate and to correlate the CAE derived strain levels, life cycle & failure mode of newly developed light weight stabilizer link for EV Bus suspension
Technical Paper

Tweaking Elastomer by Addition of Nano Silica in Formulation

2024-01-16
2024-26-0197
The art of rubber formulation science always has a scope for fine-tuning with changing the parameters like base polymer grade selection, filler selection, curing system/cross link density, manufacturing methods, and many. Hence forth the filler manufacturer arrived differentiation of the filler already, this paper provides a description of rubber formulation tuning for damped vibration automotive applications. Acicular spiky spherical and hollow spherical nano silica selected as filler. With the thorough knowledge of elastomeric formulation and with doping different new selected silica grades, an optimized DOE was done. New formulation development was focused on isolation characteristics without affecting other necessary properties. The different inputs for finite element calculations was studied with the effects of doping different fillers and also studied the resultant virtual output in damping coefficients.
Technical Paper

Simulation of Restart Gradability of a Manual Transmission Vehicle Using AVL-CRUISE

2013-10-14
2013-01-2516
1 With increasing fuel price, the power train size is on a downward trend. For Fuel Economy maximization, the engine capacity and reduction ratios are getting reduced. So gradability of a vehicle is becoming a trade off factor for the power train size finalization in a car. At the same time OEMs are working hard to maintain profitability by reducing development and operational cost and time. In this complexly competitive scenario in automobile manufacturing, simulation is gaining an upper hand over actual testing as simulation consumes lesser time and resource as compared to actual testing. This paper is aimed at developing a simulation technique for restart or stop and start gradability which is a very critical parameter for finalization of engine torque characteristics and power train configuration. The simulation is done on AVL-CRUISE software.
Technical Paper

Simulation and Experimental Analysis In the Induction Gas Dynamics of 2 Cylinder Naturally Aspirated CRDI Diesel Engine

2012-01-09
2012-28-0020
The power output of an internal combustion engine is directly proportional to the amount of air that can be forced into the cylinder per cycle and the amount of fuel that can be burned efficiently. The amount of air is most effectively increased by means of a mechanical supercharger. The purpose of this paper is attempting the non mechanical supercharging ways (Supercharging by means of gas dynamic effects) for naturally aspirated (NA) diesel engines and understanding in a better way the induction gas dynamics and its influence on engine performance characteristics. Wave dynamics in the intake system has strong influence on the performance of naturally aspirated internal combustion (IC) engines. This paper presents an application of Helmholtz resonator in the induction system of the naturally aspirated diesel engine to improve the engine breathing efficiency (volumetric efficiency).
Technical Paper

Simulation Techniques for Liquid Gasket Sealing Performance Prediction

2024-01-16
2024-26-0267
In the automotive industry, silicon adhesive has become increasingly popular due to its benefits in ease of assembly and cost savings associated with material and manufacturing processes. To meet the imperative of minimizing both time and expenses during the project's development phase, it becomes essential to select the appropriate gasket material and an optimal flange design at the outset of the design process. In order to achieve stringent emission standards such as Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFE) norms, a better sealing performance is an essential parameter. Various types of liquid gaskets such as silicon rubber based Room Temperature Vulcanizing (RTV) sealants and thermoset plastic based Anaerobic sealants are widely used in an Internal Combustion engine. They are commonly used for the components such as oil sump, bedplate, and gearbox housings, etc.
Technical Paper

Review on Laser Welding of High Strength Aluminium Alloy for Automotive Applications

2024-01-16
2024-26-0193
High strength aluminium alloys are an ideal material in the automotive sector leading to a significant weight reduction and enhancement in product safety. In recent past extensive development in the field of high strength steel and aluminium was undertaken. This development has been propelled due to demand for light weight automotive parts. The high strength to weight ratio possessed by Al alloy helps in reducing the total weight of the vehicle without effecting the overall performance, thereby increasing the fuel economy, and reducing the carbon emission level. Joining of high strength aluminium alloy is critical to develop durable automotive products. Joining of high strength aluminium alloy for mass production in automobile industry is a challenging task. Laser welding is recognized as an advanced process to join materials with a laser beam of high-power, high- energy density.
Technical Paper

Regenerative Braking Strategy for an Unaltered Mechanical Braking System of a Conventional Vehicle Converted into a Hybrid Vehicle

2013-01-09
2013-26-0155
Regenerative braking has become one of the major features for a hybrid vehicle as it converts brake energy into electrical energy storable into battery and leads to an increase in overall fuel efficiency of the vehicle. Traditional regenerative braking systems are designed such that the mechanical braking force from the friction brakes is varied in order to get maximum electric braking. This is the optimum method; however, such a system calls from electronics (Anti-lock Braking System) for regulation of mechanical braking leading to an increased cost. In this paper, the authors present a new strategy for implementing a regenerative brake strategy without changing the mechanical brake system of a conventional vehicle converted to a hybrid vehicle. The electric motor that serves as the traction motor or the Integrated Starter Generator (ISG) system, is used for regenerative braking also. There is no change in the other vehicle specifications as compared to the conventional vehicle.
Journal Article

Practical Approach to Develop Low Cost, Energy Efficient Cabin Heating for Extreme Cold Operating Environment

2011-04-12
2011-01-0132
In cold climatic regions (25°C below zero) thermal comfort inside vehicle cabin plays a vital role for safety of driver and crew members. This comfortable and safe environment can be achieved either by utilizing available heat of engine coolant in conjunction with optimized in cab air circulation or by deploying more costly options such as auxiliary heaters, e.g., Fuel Fired, Positive Temperature Coefficient heaters. The typical vehicle cabin heating system effectiveness depends on optimized warm/hot air discharge through instrument panel and foot vents, air directivity to occupant's chest and foot zones and overall air flow distribution inside the vehicle cabin. On engine side it depends on engine coolant warm up and flow rate, coolant pipe routing, coolant leakage through engine thermostat and heater core construction and capacity.
Journal Article

Performance and Emission Characterization of 1.2L MPI Engine with Multiple Fuels (E10, LPG and CNG)

2010-04-12
2010-01-0740
Most of the energy consumed in today's mobility industry is derived from fossil fuels. The demand for clean, renewable and affordable alternative energy is forcing the automotive industry to look beyond the conventional fossil fuels. Fuels options like liquefied petroleum gas (LPG), compressed natural gas (CNG) and ethanol blends are quickly finding widespread acceptance as alternative sources. This paper presents the results of experimental studies conducted on a 1.2-liter MPI engine with three different alternate fuels. The fuels considered for the evaluation (apart from base gasoline) are 10% ethanol-blended fuel (E10), LPG (gaseous propane: butane mix) and CNG (gaseous methane). Experiments were conducted to compare their effect on engine performance and emissions. The test results show that E10 has the lowest power drop whereas CNG has the highest power drop (12%) as compared to gasoline. The maximum power drop in LPG is 4%, which is close to the theoretical predictions.
Technical Paper

Performance Analysis of HCNG Fuel on Sequential Gas Injection Based Heavy Duty Engine

2015-03-10
2015-01-0005
Depletion of fossil fuel reserves, the unsteadiness of their prices and the increasingly stricter exhaust emission legislation put forward attention of world towards use of alternate fuels. The ever increasing demand for ecologically friendly vehicles can be met by use of clean fuels like Compressed Natural Gas (CNG) and Hydrogen (H2). Lower carbon to hydrogen ratio of CNG makes it a cleaner fuel, due to this CNG is gaining popularity as an internal combustion (IC) engine fuel in transport sector. Hydrogen fuel for IC engines is also being considered as a future fuel due to its simple carbon less structure. However, several obstacles have to be overcome before widespread utilization of hydrogen as an IC engine fuel can occur in the transport sector. The 18 percent hydrogen enriched CNG fuel referred to as HCNG has the potential to lower emissions and could be considered a first step towards promotion of a Hydrogen economy.
Technical Paper

Optimization of Commercial Vehicle Cooling Package for Improvement of Vehicle Fuel Economy

2015-04-14
2015-01-1349
In a heavy commercial vehicle, the engine cooling package is designed by considering peak heat load on the vehicle cooling system from an engine end. In cooling systems, the major unit that consumes most power from the engine is the engine cooling fan. It was seen from the vehicle measured duty cycle data, for most of the time engine operates at part load condition. Regardless of demand from the engine cooling system, engine fan was operating continuously at equivalent speed of the engine. This results in continuous consumption of productive engine power from the fan end ultimately affecting vehicle fuel economy. The present study shows that low idle speed viscous fan has the potential to meet stringent engine cooling performance requirements and consumes less engine power throughout an actual vehicle duty cycle. Experiments were conducted on test vehicle with different fan speeds.
Technical Paper

Optimization of Air Intake System and Exhaust System for Better Performance of Turbocharged Gasoline Engine

2018-04-03
2018-01-1424
Gasoline engines with Multi point fuel injection (MPFI) technology are being developed with naturally aspirated and/or turbocharged engines. Wherein a MPFI and turbo charged combination engines have certain challenges during development stages. One of the important challenge is design of air intake and exhaust system. With MPFI turbocharged engine combination, the under bonnet heat management is crucial task for drivability. The heat management of air intake plays a vital role in drivability part therefore a design layout of air intake path is an important aspect. Drivability can be categorized as low end, mid-range and top end drivability. Turbocharged MPFI engines have a typical phenomenon of ‘Lag in response’ in the low-end region. This ‘Lag in response’ phenomenon at low-end drivability region can be overcome through optimization of air intake system and optimization of exhaust back pressure.
Technical Paper

One Dimensional (1-D) Simulation Model for Ride and Comfort Evaluation of a Two Axle Truck

2024-01-16
2024-26-0299
In automotive industry, testing and validation teams are highly dependent on availability of prototype vehicles for testing and evaluation of ride & comfort behavior of vehicles. Special test tracks surfaces are also used (namely Tar road, Express way and driving over a Cleat) to evaluate the ride & comfort through subjective evaluation. Ride is largely affected by transmissibility of road excitations to the driver and other occupant’s seats, influence of suspension, bushes and tire are the major contributors in the transfer path of vibrations. A configurable 1–D simulation model of a Two Axle Truck is developed for quick evaluation of the ride & comfort behavior which is need of the hour for the testing team in optimizing the number of iterations in physical testing. These simulations will help in understanding the ride & comfort behavior and its sensitivity to changes in the component’s characteristics in absence of physical test vehicles.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Technical Paper

Novel Exhaust System Architecture for Petroleum Oil Tanker Application Vehicle

2024-01-16
2024-26-0345
Petroleum Oil, Lubricants (POL) & Liquefied petroleum gas (LPG) tanker vehicles are special application segment that holds a significant Market share for commercial vehicles. These vehicles need to comply additional Safety regulations specified by Petroleum and explosives safety organization (PESO). For compliance to Rule-70, Protective heat shield on exhaust system needs to be designed and validated in order to avoid any catastrophic failure. The paper demonstrates the methodology to identify the worst case scenario for the existing commercial vehicle segment. Based on detail digital mock up (DMU) review Metallic heat shield was designed on after treatment system (ATS). The flexible heat shield was designed for exhaust pipe & joints in order to restrain the heat flow to the surrounding aggregates. After finalising design, CFD analysis was carried out to find out the thermal effects on various components and results within acceptable limits.
Technical Paper

Model-Based System Engineering Approach for Steering Feel Simulation for Passenger Vehicles

2021-09-22
2021-26-0400
The basic function of steering system is to control the direction of the vehicle. The driver applies effort on the steering wheel and receives feedback through the steering system as a result of tire to road interaction. This feedback consists of a haptic (force) feedback which is directly felt by the driver and it is termed as steering feel. Precise steering feel gives better driving experience and is decisive factor for customer to buy a vehicle as well as for OEMs in building brand image. Along with steering parameters, suspension and tire parameters also has significant impact on steering feel. In past, modelling of the steering system was done at component level or with simplified vehicle system. Such approaches had not given accurate results of steering feel metric and resulted in incorrect steering design parameter selection. In order to replicate actual vehicle characteristics, complex and detailed modelling of steering, tire and suspension subsystems is necessary.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Lubrication Evaluation of EV Transmission

2024-01-16
2024-26-0328
Advent of EV powertrain has considerable effect on transmission development activities as competed to regular ICE transmission. Conventional ICE transmission and the transmission for an e-powertrain differ on fundamental level. The conventional transmission has number of gear ratios, shift mechanism which enables the transmission to deliver a smooth power output as per demand from the driver. Whereas the e-powertrain transmission is mostly a single gear ratio transmission (reducer) which primarily depends on speed and torque variation from the motor to cater the driver requirement. Hence, the operating speeds of such e-transmissions can vary from 0 to 20000 rpm in both forward and reverse directions. Such a large speed variation as compared with conventional transmission calls for special attention towards the lubrication of internal components. High speeds and lower oil viscosities tend to disrupt the oil films in between contact surfaces causing metal to metal contact.
Technical Paper

High Fidelity Modeling and HIL Porting of a Hybrid Electric Car Development

2015-01-14
2015-26-0011
A hybrid electric powertrain being a complex system requires analysis of all its subsystems to optimally utilize, size components for performance evaluation and control strategy development. An integrated high fidelity model of these can lower development costs, time and achieve the targeted performance while allowing for early redefinition of the system. A high fidelity model of a sedan car featuring chassis with longitudinal and lateral dynamics, suspension with joints, tires calculating longitudinal & lateral forces during vehicle motion, Engine model with combustion & dynamics of reciprocating and rotating components, Electric motors, Battery system, and gearbox with synchronizers and friction components was developed. Powertrain components were interconnected using 3D rotational flanges. Weight distribution was accomplished by appropriately locating various powertrain components using 3D supporting mounts, which help to study the mount forces as well.
Technical Paper

Experimental Studies on the Effect of Vaporizer Heating and Transition Temperature in a Bi-Fuel LPG Vehicle

2011-01-19
2011-26-0006
Liquefied Petroleum Gas (LPG)-powered vehicles use a pressure regulator/vaporizer to expand and modulate the gas pressure to meet the engine's operational demands. This expansion process is accompanied by a phase change wherein liquid LPG is converted to its gaseous form. This consequently reduces the temperature of the working fluid which may result in freezing (Joule-Thompson effect). In order to aid complete phase change and avoid any freezing, the vaporizer is heated either electrically or by the engine coolant circulation. Any inefficiency in the heating may lead to improper phase change and can result in a phenomenon known as "liquid carryover," wherein a liquid LPG gets entrained in the downstream gas circuit where the gaseous form is demanded. The liquid carryover (if any) leads to the improper engine functioning leading to driveability and emission issues.
X