Refine Your Search

Topic

Author

Search Results

Technical Paper

Simulation of Restart Gradability of a Manual Transmission Vehicle Using AVL-CRUISE

2013-10-14
2013-01-2516
1 With increasing fuel price, the power train size is on a downward trend. For Fuel Economy maximization, the engine capacity and reduction ratios are getting reduced. So gradability of a vehicle is becoming a trade off factor for the power train size finalization in a car. At the same time OEMs are working hard to maintain profitability by reducing development and operational cost and time. In this complexly competitive scenario in automobile manufacturing, simulation is gaining an upper hand over actual testing as simulation consumes lesser time and resource as compared to actual testing. This paper is aimed at developing a simulation technique for restart or stop and start gradability which is a very critical parameter for finalization of engine torque characteristics and power train configuration. The simulation is done on AVL-CRUISE software.
Technical Paper

Simulation and Experimental Analysis In the Induction Gas Dynamics of 2 Cylinder Naturally Aspirated CRDI Diesel Engine

2012-01-09
2012-28-0020
The power output of an internal combustion engine is directly proportional to the amount of air that can be forced into the cylinder per cycle and the amount of fuel that can be burned efficiently. The amount of air is most effectively increased by means of a mechanical supercharger. The purpose of this paper is attempting the non mechanical supercharging ways (Supercharging by means of gas dynamic effects) for naturally aspirated (NA) diesel engines and understanding in a better way the induction gas dynamics and its influence on engine performance characteristics. Wave dynamics in the intake system has strong influence on the performance of naturally aspirated internal combustion (IC) engines. This paper presents an application of Helmholtz resonator in the induction system of the naturally aspirated diesel engine to improve the engine breathing efficiency (volumetric efficiency).
Technical Paper

Simulation Techniques for Liquid Gasket Sealing Performance Prediction

2024-01-16
2024-26-0267
In the automotive industry, silicon adhesive has become increasingly popular due to its benefits in ease of assembly and cost savings associated with material and manufacturing processes. To meet the imperative of minimizing both time and expenses during the project's development phase, it becomes essential to select the appropriate gasket material and an optimal flange design at the outset of the design process. In order to achieve stringent emission standards such as Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFE) norms, a better sealing performance is an essential parameter. Various types of liquid gaskets such as silicon rubber based Room Temperature Vulcanizing (RTV) sealants and thermoset plastic based Anaerobic sealants are widely used in an Internal Combustion engine. They are commonly used for the components such as oil sump, bedplate, and gearbox housings, etc.
Technical Paper

Review on Laser Welding of High Strength Aluminium Alloy for Automotive Applications

2024-01-16
2024-26-0193
High strength aluminium alloys are an ideal material in the automotive sector leading to a significant weight reduction and enhancement in product safety. In recent past extensive development in the field of high strength steel and aluminium was undertaken. This development has been propelled due to demand for light weight automotive parts. The high strength to weight ratio possessed by Al alloy helps in reducing the total weight of the vehicle without effecting the overall performance, thereby increasing the fuel economy, and reducing the carbon emission level. Joining of high strength aluminium alloy is critical to develop durable automotive products. Joining of high strength aluminium alloy for mass production in automobile industry is a challenging task. Laser welding is recognized as an advanced process to join materials with a laser beam of high-power, high- energy density.
Technical Paper

Regenerative Braking Strategy for an Unaltered Mechanical Braking System of a Conventional Vehicle Converted into a Hybrid Vehicle

2013-01-09
2013-26-0155
Regenerative braking has become one of the major features for a hybrid vehicle as it converts brake energy into electrical energy storable into battery and leads to an increase in overall fuel efficiency of the vehicle. Traditional regenerative braking systems are designed such that the mechanical braking force from the friction brakes is varied in order to get maximum electric braking. This is the optimum method; however, such a system calls from electronics (Anti-lock Braking System) for regulation of mechanical braking leading to an increased cost. In this paper, the authors present a new strategy for implementing a regenerative brake strategy without changing the mechanical brake system of a conventional vehicle converted to a hybrid vehicle. The electric motor that serves as the traction motor or the Integrated Starter Generator (ISG) system, is used for regenerative braking also. There is no change in the other vehicle specifications as compared to the conventional vehicle.
Journal Article

Practical Approach to Develop Low Cost, Energy Efficient Cabin Heating for Extreme Cold Operating Environment

2011-04-12
2011-01-0132
In cold climatic regions (25°C below zero) thermal comfort inside vehicle cabin plays a vital role for safety of driver and crew members. This comfortable and safe environment can be achieved either by utilizing available heat of engine coolant in conjunction with optimized in cab air circulation or by deploying more costly options such as auxiliary heaters, e.g., Fuel Fired, Positive Temperature Coefficient heaters. The typical vehicle cabin heating system effectiveness depends on optimized warm/hot air discharge through instrument panel and foot vents, air directivity to occupant's chest and foot zones and overall air flow distribution inside the vehicle cabin. On engine side it depends on engine coolant warm up and flow rate, coolant pipe routing, coolant leakage through engine thermostat and heater core construction and capacity.
Journal Article

Performance and Emission Characterization of 1.2L MPI Engine with Multiple Fuels (E10, LPG and CNG)

2010-04-12
2010-01-0740
Most of the energy consumed in today's mobility industry is derived from fossil fuels. The demand for clean, renewable and affordable alternative energy is forcing the automotive industry to look beyond the conventional fossil fuels. Fuels options like liquefied petroleum gas (LPG), compressed natural gas (CNG) and ethanol blends are quickly finding widespread acceptance as alternative sources. This paper presents the results of experimental studies conducted on a 1.2-liter MPI engine with three different alternate fuels. The fuels considered for the evaluation (apart from base gasoline) are 10% ethanol-blended fuel (E10), LPG (gaseous propane: butane mix) and CNG (gaseous methane). Experiments were conducted to compare their effect on engine performance and emissions. The test results show that E10 has the lowest power drop whereas CNG has the highest power drop (12%) as compared to gasoline. The maximum power drop in LPG is 4%, which is close to the theoretical predictions.
Technical Paper

Performance Analysis of HCNG Fuel on Sequential Gas Injection Based Heavy Duty Engine

2015-03-10
2015-01-0005
Depletion of fossil fuel reserves, the unsteadiness of their prices and the increasingly stricter exhaust emission legislation put forward attention of world towards use of alternate fuels. The ever increasing demand for ecologically friendly vehicles can be met by use of clean fuels like Compressed Natural Gas (CNG) and Hydrogen (H2). Lower carbon to hydrogen ratio of CNG makes it a cleaner fuel, due to this CNG is gaining popularity as an internal combustion (IC) engine fuel in transport sector. Hydrogen fuel for IC engines is also being considered as a future fuel due to its simple carbon less structure. However, several obstacles have to be overcome before widespread utilization of hydrogen as an IC engine fuel can occur in the transport sector. The 18 percent hydrogen enriched CNG fuel referred to as HCNG has the potential to lower emissions and could be considered a first step towards promotion of a Hydrogen economy.
Technical Paper

Parametric Study of Hub Cum Brake Drum for Optimum Design Performance

2015-01-14
2015-26-0079
Brake drum is an important component in automotive, which is a link between axle and wheel. It performance is of utmost importance as it is related to the safety of the car as well to the passengers. Many design parameters are taken into consideration while designing the brake drum. The sensitivity of these parameters is studied for optimum design of brake drum. The critical parameters in terms of reliability, safety & durability could be the cross section, thickness of hub, interference & surface roughness between bearing and hub, wheel loading, heat generation on drum, manufacturing and assembly process. The brake drum design is derived by considering these parameters. Hence the sensitivity of these parameters is studied both virtually & physically, in detail. The optimum value of each parameter could be chosen complying each other's values.
Technical Paper

Optimization of Commercial Vehicle Cooling Package for Improvement of Vehicle Fuel Economy

2015-04-14
2015-01-1349
In a heavy commercial vehicle, the engine cooling package is designed by considering peak heat load on the vehicle cooling system from an engine end. In cooling systems, the major unit that consumes most power from the engine is the engine cooling fan. It was seen from the vehicle measured duty cycle data, for most of the time engine operates at part load condition. Regardless of demand from the engine cooling system, engine fan was operating continuously at equivalent speed of the engine. This results in continuous consumption of productive engine power from the fan end ultimately affecting vehicle fuel economy. The present study shows that low idle speed viscous fan has the potential to meet stringent engine cooling performance requirements and consumes less engine power throughout an actual vehicle duty cycle. Experiments were conducted on test vehicle with different fan speeds.
Technical Paper

Optimization of Air Intake System and Exhaust System for Better Performance of Turbocharged Gasoline Engine

2018-04-03
2018-01-1424
Gasoline engines with Multi point fuel injection (MPFI) technology are being developed with naturally aspirated and/or turbocharged engines. Wherein a MPFI and turbo charged combination engines have certain challenges during development stages. One of the important challenge is design of air intake and exhaust system. With MPFI turbocharged engine combination, the under bonnet heat management is crucial task for drivability. The heat management of air intake plays a vital role in drivability part therefore a design layout of air intake path is an important aspect. Drivability can be categorized as low end, mid-range and top end drivability. Turbocharged MPFI engines have a typical phenomenon of ‘Lag in response’ in the low-end region. This ‘Lag in response’ phenomenon at low-end drivability region can be overcome through optimization of air intake system and optimization of exhaust back pressure.
Technical Paper

Novel Exhaust System Architecture for Petroleum Oil Tanker Application Vehicle

2024-01-16
2024-26-0345
Petroleum Oil, Lubricants (POL) & Liquefied petroleum gas (LPG) tanker vehicles are special application segment that holds a significant Market share for commercial vehicles. These vehicles need to comply additional Safety regulations specified by Petroleum and explosives safety organization (PESO). For compliance to Rule-70, Protective heat shield on exhaust system needs to be designed and validated in order to avoid any catastrophic failure. The paper demonstrates the methodology to identify the worst case scenario for the existing commercial vehicle segment. Based on detail digital mock up (DMU) review Metallic heat shield was designed on after treatment system (ATS). The flexible heat shield was designed for exhaust pipe & joints in order to restrain the heat flow to the surrounding aggregates. After finalising design, CFD analysis was carried out to find out the thermal effects on various components and results within acceptable limits.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Lubrication Evaluation of EV Transmission

2024-01-16
2024-26-0328
Advent of EV powertrain has considerable effect on transmission development activities as competed to regular ICE transmission. Conventional ICE transmission and the transmission for an e-powertrain differ on fundamental level. The conventional transmission has number of gear ratios, shift mechanism which enables the transmission to deliver a smooth power output as per demand from the driver. Whereas the e-powertrain transmission is mostly a single gear ratio transmission (reducer) which primarily depends on speed and torque variation from the motor to cater the driver requirement. Hence, the operating speeds of such e-transmissions can vary from 0 to 20000 rpm in both forward and reverse directions. Such a large speed variation as compared with conventional transmission calls for special attention towards the lubrication of internal components. High speeds and lower oil viscosities tend to disrupt the oil films in between contact surfaces causing metal to metal contact.
Technical Paper

High Fidelity Modeling and HIL Porting of a Hybrid Electric Car Development

2015-01-14
2015-26-0011
A hybrid electric powertrain being a complex system requires analysis of all its subsystems to optimally utilize, size components for performance evaluation and control strategy development. An integrated high fidelity model of these can lower development costs, time and achieve the targeted performance while allowing for early redefinition of the system. A high fidelity model of a sedan car featuring chassis with longitudinal and lateral dynamics, suspension with joints, tires calculating longitudinal & lateral forces during vehicle motion, Engine model with combustion & dynamics of reciprocating and rotating components, Electric motors, Battery system, and gearbox with synchronizers and friction components was developed. Powertrain components were interconnected using 3D rotational flanges. Weight distribution was accomplished by appropriately locating various powertrain components using 3D supporting mounts, which help to study the mount forces as well.
Technical Paper

Geometry, Sizing and Optimization of Honeycomb Structures along with Embedded Metal Inserts on the Floor for Truck-Mounted Container Applications

2024-01-16
2024-26-0186
With the rise of worldwide trends towards light weighting and the move towards electric vehicles, it is now more important than ever for the automotive industry to develop and implement lightweight materials that will result in significant weight reduction and product improvements. A great deal of research has been done on how to best combine and configure honeycomb cores with the right face sheets for Truck-Mounted Container Applications. Honeycomb structures possess the ability to bring about superior structural rigidity when the core parameters are selected and optimized based on the automotive application requirements.
Technical Paper

Experimental Studies on the Effect of Vaporizer Heating and Transition Temperature in a Bi-Fuel LPG Vehicle

2011-01-19
2011-26-0006
Liquefied Petroleum Gas (LPG)-powered vehicles use a pressure regulator/vaporizer to expand and modulate the gas pressure to meet the engine's operational demands. This expansion process is accompanied by a phase change wherein liquid LPG is converted to its gaseous form. This consequently reduces the temperature of the working fluid which may result in freezing (Joule-Thompson effect). In order to aid complete phase change and avoid any freezing, the vaporizer is heated either electrically or by the engine coolant circulation. Any inefficiency in the heating may lead to improper phase change and can result in a phenomenon known as "liquid carryover," wherein a liquid LPG gets entrained in the downstream gas circuit where the gaseous form is demanded. The liquid carryover (if any) leads to the improper engine functioning leading to driveability and emission issues.
Technical Paper

Experimental Investigation on the Effect of Two Different Multiple Injection Strategies on Emissions, Combustion Noise and Performances of an Automotive CRDI Engine

2016-04-05
2016-01-0871
An emissions, combustion noise and performance study were conducted to explore the effects of two different multiple injections strategies on emissions, combustion noise and performances without altering EGR %. The experiments were done on a six cylinder inline CRDI diesel production engine. The aim of this study is to improve performances (brake specific fuel consumption [BSFC], torque) and combustion noise (reduction) using multiple injection strategies without violating emission regulations. The other objective of this carried-out analysis is to examine the influence of different operating parameters (Speed and Load) and main injection timing combined, on same multiple injection strategies (Pilot- main – after {PMA}and Early - pilot- main –after {EPMA}) by means of analyzing emissions/soot, combustion noise and performances data.
Technical Paper

Evaluation of Performance and Emission Characteristics of an Unmodified Naturally Aspirated Compression Ignition Engine on Blends of Diethyl Ether and Diesel

2013-11-27
2013-01-2888
The world today is majorly dependent upon fossil fuels for power generation, of which diesel forms an integral part. Diesel engines, having the highest thermal efficiency of any regular internal or external combustion engine, are widely used in almost all walks of life and cannot be dispensed with in the near future. However, the limited availability of diesel and the adverse effects of diesel engine emissions like nitrogen oxide (NOx) and soot particles raise serious concerns. Hence, their performance and emission improvement continues to be an avenue of great research activity. In this research work, the effects of blending Diethyl Ether with diesel in various proportions (5%, 10%, 15% and 20% by volume) were evaluated on engine performance and emissions of an industrial internal combustion engine.
Technical Paper

Evaluation of Interface Microstructure and Bonding Strength for Dissimilar Rotary Friction Welding of E46 and AA6061-T6

2024-01-16
2024-26-0195
Nowadays, friction welding is recognised as a highly productive and economic joining process for similar as well as dissimilar welding of automobile and aerospace components. Friction welding is the viable solution to offset the challenges of dissimilar fusion welding due to varying thermal and physical properties as well as limited mutual solubility. This study investigated interface microstructure and bonding strength of dissimilar rotary friction welding of 3.15 mm E46 plate and 45 mm AA6061-T6 rod. The direct drive rotary friction welding of E46 and AA6061-T6 is performed at combinations of two different friction times (4 sec and 7 sec) and forging pressure (108 MPa and 125 MPa). Mechanical bonding strength at the interface is evaluated based on the push-off and multistep shear tests. Further, a fractured steel surface was visually examined to understand the failure mechanism of welded joints.
X