Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Control Stability Analysis Applied to Columbus ATCS

2009-07-12
2009-01-2583
Good performance of the Columbus water loop active control system has been demonstrated by several analyses, ground test and is further confirmed by the current flight data. Even so, a comprehensive description of the control within the classical theory is needed, in order to complete the system description, posing also the basis for similar applications to come. Thermal and hydraulic control loops are considered as two separate systems and linear control methods are applied. Loop stability and performance is discussed by computing stability regions of the PI control coefficients at different loop configurations and results compared with available test, flight and simulation data.
Technical Paper

Columbus to Human Research Facility Hydraulic Compatibility Test: Analysis and Results

2005-07-11
2005-01-3119
ESA and NASA agencies agreed to run an interface compatibility test at the EADS facility between the Columbus flight module and a duplicate ground unit of a currently on-orbit US International Standard Payload Rack, the Human Research Facility (HRF) Flight Prototype Rack (FPR). The purpose of the test was to demonstrate the capability to run US payloads inside the European ISS module Columbus. One of the critical aspects to be verified to ensure suitable operations of the two systems was the combined performance of the hydraulic controls resident in the HRF and Columbus coolant loops. A hydraulic model of the HRF FPR was developed and combined with the Columbus Active Thermal Control System (ATCS) model. Several coupled thermal-hydraulic test cases were then performed, preceded by mathematical analysis, required to predict safe test conditions and to optimize the Columbus valve configurations.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Technical Paper

ATCS Operations during Columbus Mission: Flight Data Evaluation and Correlation

2009-07-12
2009-01-2475
The Columbus water loop active thermal control system (ATCS) started its operations on early 2008 as main thermal bus for the internal equipments of the laboratory. From then on, several events occurred like internal payloads activations/deactivations, Condensing Heat eXchanger (CHX) dry-out, Intermediate Heat eXchangers (IHX) insertions, by-passes opening and so on. Even if the control system stability was beyond dispute, some of these events produced unexpected transients, posing some problems to the overall system operations. Scope of this paper is to provide a brief overview of the system alerts and describe the major events occurred, the use of mathematical modelling analysis and correlation for the engineering evaluations and finally the agreed actions applied in flight operations.
X