Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Integration of Real and Virtual Tools for Suspension Development

2011-01-19
2011-26-0115
Suspension development is one of the key steps in a complete vehicle development program. Computer simulation and analysis tools such as Multi Body Dynamics (MBD) simulation are used to refine initial concept and suspension parameters. Later on when a physical prototype is available the suspension system can be experimentally optimized at vehicle level. In this paper a new methodology is proposed which integrates virtual and experimental tools so that design, development and validation of the suspension system is carried out in the early phase of the vehicle development cycle with actual suspension components and without the need of a vehicle prototype. With this new approach, the design of any critical suspension components such as dampers can be optimized at the vehicle level. The new approach consists of combining the actual physical components on loading rig in closed loop with vehicle dynamic model running in real time.
Technical Paper

Evaluation of Fatigue Properties and Effect of Stress Concentration on Fatigue Life of Dual Phase Steel Grade DP 800

2011-01-19
2011-26-0120
Dual Phase (DP) steels with their high energy absorbing capacity are fast emerging as materials for automotive body applications with improved crashworthiness. The unique combination of high strength and good ductility associated with the DP steels originates from its specially developed microstructure that consists of martensitic islands in ferritic matrix. The high strength and good ductility are expected to give very good resistance to fatigue crack generation and propagation respectively. This paper discusses the fatigue properties determined for a DP steel grade viz. DP 800. The strain controlled fatigue tests were carried out on the un-notched specimens prepared from 1.2 mm sheets to generate E-N curves. The force controlled axial fatigue tests were carried out on two types of specimens prepared from 1.2 mm sheets to generate S-N curves for two Stress Concentration Factors (SCF) viz. 2.5 and 4.4.
X