Refine Your Search

Topic

Search Results

Technical Paper

Thermoplastic Adhesive Films for Automotive Interior Trim Applications

1991-02-01
910521
Joining dissimilar parts in automotive interior trim applications has been accomplished by utilizing mechanical fasteners, organic and water based adhesives, and more recently, thermoplastic polymers. Recent trends towards reducing solvent emissions and waste management problems, improving the consistency of adhesive application, integrating parts, lowering parts fabrication costs, and designing a specified bond level has increased the use of thermoplastic adhesive films as bonding agents in several applications. Initial efforts began over fifteen years ago with Dow Adhesive Films (DAF) being designed for bonding interior trim fabrics to various substrates. Films have subsequently been designed to improve performance of many interior trim parts in many ways such as: improving water resistance, allowing the part to be molded before installation, imparting a slip surface to a part, and supporting a non-woven fabric.
Technical Paper

The Effect of Non-Metallic Inclusions on the Properties of Die Cast Magnesium

1997-02-24
970331
The effect of non-metallic inclusions (NMIs) on the properties of die cast magnesium was investigated. NMI content was quantified by a newly developed light reflectance technique. The mechanical properties of optimized AM60B test bars were found to decrease at high inclusion levels. Low inclusion levels did not statistically reduce the mechanical properties of AM60B as compared to virgin metal. Argon-refined AM60B displayed mechanical properties that were indistinguishable from virgin alloy. AZ91D test plates were die cast at various cleanliness levels. After salt spray testing, it was found that the surface quality of the castings was slightly degraded at high NMI levels. The general corrosion performance was also affected, but paint adhesion was relatively unaffected. At high NMI levels, the corrosion performance was still better than 380 A. Machinability of the AZ91D test plates was quantified by measuring tool wear and cutting forces.
Technical Paper

The Critical Contaminant Limits and Salt Water Corrosion Performance of Magnesium AE42 Alloy

1992-02-01
920073
The magnesium alloy AE42 (nominally a 4 % aluminum, 2 % rare earth alloy of magnesium) is a developmental die cast alloy with good strength and creep resistance at elevated temperatures. Standard salt spray corrosion tests have been used with controlled purity AE42 die castings to define the critical iron, nickel and copper contaminant levels below which excellent corrosion performance can be obtained. As previously observed with the magnesium alloys AZ91, AM60, and AS41, the critical iron content is dependent upon the manganese content of the alloy. While the iron:manganese tolerance for AE42 is about the same as that of AM60, the tolerance for the nickel and copper contaminants is greater than that of AZ91. When each of these contaminants is less than the critical level, the salt spray performance was equal to or better than die cast 380 aluminum and cold rolled steel.
Technical Paper

Syndiotactic Polystyrene: A New Polymer for High Performance Automotive Applications

1993-03-01
930088
Syndiotactic potystyrene (SPS) is a new semi-crystalline polymer under development by Dow Plastics, a business group of The Dow Chemical Company. The material is differentiated from conventional styrenic polymers in terms of microstructure and physical properties and represents the basis for an entirely new family of materials derived from crystalline polystyrene. SPS exhibits excellent thermal performance with a melting point of 270° C (520° F) combined with resistance to moisture and automotive fluids. Products produced from SPS demonstrate exceptional electrical performance, low specific gravity, competitive toughness and high modulus relative to other semi-crystalline engineering polymers. A wide range of products have been formulated including impact modified and glass reinforced resins for use in specific markets.
Technical Paper

SPS Crystalline Polymer: A New Material for Automotive Interconnect Systems

1997-02-24
970305
Syndiotactic Polystyrene (SPS) is a new semi-crystalline polymer under development by Dow Plastics. The material is completely different from conventional styrenics in structure, physical properties and synthetic method, and represents the basis for an entirely new family of materials based on crystalline polystyrene. SPS has a melting point of 270°C (520°F) combined with excellent resistance to moisture and automotive fluids. Additionally, SPS products exhibit exceptional electrical performance and competitive toughness and stiffness. A wide range of products have been formulated for specific applications including impact-modified and glass-reinforced grades. This paper was designed to discuss the performance attributes of SPS as they relate to use of this material in automotive, interconnect systems where a combination of heat resistance, chemical resistance, dimensional stability and enhanced processability are required.
Technical Paper

Recycling Plastic Scrap in SRIM Composites

1993-03-01
930567
The objective of this paper will be to review a novel recycle process involving Structural Reaction Injection Molding(SRIM) which enables a variety of coarsely ground plastic recycle materials to be incorporated into the molded part. What makes this approach novel, is that flexural modulus of the fabricated parts are actually increased when the recycled granulate is employed in the part. This paper will present data for the recycle of a variety of automotive parts, including painted fascia, door skins, covered interior door panels, armrests and instrument panels along with composite bumper beams into the SRIM recycle core process. Resulting part economics will be reviewed along with potential applications to utilize this technology.
Technical Paper

Recyclability of Flexible Thermoplastic Polyurethane/ABS Automotive Bumper Fascia

1991-02-01
910688
A family of thermoplastic Polyurethane (TPU) blends is being developed to compete in the flexible automotive bumper fascia market. Features of these blends include paintability without adhesion promoter or primer, ease of processing, outstanding low temperature impact strength, good mar resistance, and excellent property retention upon recycling. Laboratory and application performance data indicate that painted TPU/ABS Blend XT2100 regrind can be incorporated up to a 25% level into flexible thermoplastic fascia without sacrificing impact resistance.
Technical Paper

Polymeric Reflective Materials for Automotive Applications

1993-03-01
930177
A highly reflective polymeric sheet has been invented which has a metallic appearance but contains no metal. The material can appear chrome-like, or be designed to transmit and reflect light for novel lens applications. The absence of metal waste streams and volatile organic emissions gives this technology significant environmental advantages over competitive methods of bright work or reflector fabrication. This unique optical material is non-corroding, and has the low thermal and electrical conductance of plastic. It is produced by coextruding a large number of alternating layers of polymers having a refractive index difference. This technology offers new degrees of freedom for light control in many applications including lighting reflectors, lenses, display panels, decorative trims, and energy management.
Technical Paper

Performance Comparison of Plastic Composites with Metals for Vertical Body Panel Applications

1999-03-01
1999-01-0848
In 1998, approximately 57,000 Tonnes of plastic composites were utilized as body panels on cars and trucks in North America. Three material types, generically labeled SMC, RIM and Thermoplastic are vying to carve a market niche from steel which dominates the market place with an estimated volume of 1 million Tonnes per year. Since plastic body panels have higher material costs but lower tooling costs, they are primarily utilized when build volumes are less than 200,000 vehicles per year or specific composite performance capabilities are demanded. This paper reviews the various performance parameters required of a body panel material and the relative strengths of Aluminum, RIM, SMC, Steel and Thermoplastics to meet these demands. A decision making process is utilized which allows for a comparison between the different materials. Since cost is so critical, it is left as an independent variable.
Technical Paper

Novel Acoustical Polyolefin Foams

2001-04-30
2001-01-1556
Novel acoustical materials have been developed. The materials are thermoplastic foams extruded from blends of a polypropylene (PP) resin with an ethylenic polymer resin. One material is an open-cell sheet product made from a blend of a PP resin and a polyolefin elastomer (POE). Another is a large-celled plank foam of substantially closed-cell structure made from a blend of a polypropylene resin and a low density polyethylene (PE) resin. The foam materials are of lightweight, hydrophobic, dust free, recyclable and withstand the temperatures prevailing in automotive uses.
Technical Paper

New High Heat Stable, Low Gloss. Automotive Interior Trim Resins Having Excellent Processability

1989-02-01
890592
A new family of high heat stable, few gloss ABS resins has been developed specifically to offer the automotive industry improved performance in molded interior trim parts. The new resins offer excellent fabrication and property performance similar to that of standard-heat low gloss ABS resins. Advantages over current high heat ABS resins include improved injection moldability, greater resistance to heat warping and to U.V. degradation, improved color stability, improved toughness, and consequent good finished part economics while maintaining equivalent heat resistance. Physical property and testing-evaluation data are provided.
Technical Paper

New Developments in Low Density RIM Composites for Interior Trim

1994-03-01
940703
The use of low density reinforced Reaction Injection Molded (RIM) substrates for covered interior automotive articles continues to increase globally. Reduced party mass, consolidation of manufacturing steps (labor), and the use of aluminum tooling, instead of steel, are cited advantages that LD-RIM offers when compared to traditional wood based and thermoplastic materials. Two RIM processes are successfully being used to produce covered interior door panels. Low density structural RIM (LD-SRIM), utilizing conventional RIM equipment, involves the placement of a pre-cut fiberglass mat in the tool cavity prior to open-pour injection of the 2-stream liquid urethane components. Low density reinforced RIM (LD-RRIM), utilizing lance cylinder RIM equipment, incorporates reinforcing fibers, such as milled fiberglass or wollastonite, in the liquid resin component. The liquid resin containing reinforcing filler is injected with the isocyanate component into a closed mold.
Technical Paper

Material Selection Guidelines for Structural Instrument Panel Applications

1995-02-01
950642
Structural instrument panels are an excellent alternative to traditional constructions since they can provide substantial part consolidation, weight reduction, tool and cost savings, and manufacturing and assembly simplification. In structural panels, the main energy absorbing element for decelerating an unrestrained occupant is the plastic integrated retainer-structural duct. The role of the components in the instrument panel needs to be clearly understood for adequately engineering the system and properly selecting the polymeric material for optimum system performance in the different operating environments. The present paper discusses the performance of the structural instrument panel, the engineering and design requirements, and provides guidelines for selection of materials.
Technical Paper

Hot Chamber Diecasting of Magnesium Alloy AM50A for Automotive Interior Structural Components

1996-02-01
960416
Increased requirements for crash energy management in automotive interiors have led to increased application of magnesium alloy AM50A. Successful integration of this new alloy with hot chamber diecasting process technology requires substantial adjustment and attention to processes and practices. This paper details the conversion of magnesium AZ91D steering column diecastings to high ductility structural alloy. Description is given of the changes made to foundry practices, casting parameters, process compliance monitoring, and hot end component management. The resulting improvements allow production of components comparable to the traditional alloy in manufacturing process demands while offering improved ductility and impact strength.
Technical Paper

High Purity Magnesium AM60 Alloy: The Critical Contaminant Limits and the Salt Water Corrosion Performance

1986-02-01
860288
Standard salt spray corrosion tests have been used with controlled purity AM60 castings to define the critical iron, nickel, and copper contaminant levels below which excellent corrosion performance can be obtained. As previously observed with the AZ91 alloy, the iron solubility and the corrosion tolerance limit for iron are dependent upon the manganese content of the metal. The zinc free AM60 alloy has a somewhat lower tolerance for all three of the critical contaminants when compared to AZ91, but when the three contaminants are below their individual tolerance limits, the salt spray performance is again equal to or better than die cast 380 aluminum and cold rolled steel.
Technical Paper

Evaluation of Thermoplastic Materials for Automotive Interior Trim Applications

1991-02-01
910519
Material and design engineers are constantly faced with the task of selecting the best thermoplastic material for interior trim applications. The purpose of this paper is to relate the results of physical property testing and part evaluation to their plastics selection process to allow a more optimized material choice for automotive interior applications. The thermoplastics that were evaluated in this study are the two largest volume plastics used today in interior trim, ABS (acrylonitrile, butadiene, styrene terpolymer) and polypropylene.
Technical Paper

Engineering Development and Performance of the Chrysler Dakota Fully-Integrated Thermoplastic Instrument Panel

1996-02-01
960399
A fully-integrated thermoplastic structural instrument panel (IP) system will be implemented on Chrysler's Dodge Dakota Truck Platform. The structural IP consists of a three-piece monocoque thermoplastic injection molded structure that replaces the traditional retainer, air delivery ducts, steel beams and reinforcements typically used in IP designs. Ribbed thermoplastic bolster systems have been incorporated as part of the energy management system. The structural IP provides the required stiffness to satisfy noise, vibration, and harshness (NVH) quality targets and the necessary strength and rigidity to effectively meet FMVSS No. 208 requirements for managing occupant and passenger air bag (PAB) deployment loading during 48 km/h (30 mph) frontal crashes.
Technical Paper

ELPO-Capable Polyurea RRIM Advancements for Automotive Body Panels

1998-02-23
980987
Continued development of Reinforced Reaction Injection Molding (RRIM) polyurea polymers for toughness, blister resistance and large-part processing as exterior vertical body panels has launched ELPO-compatible exterior outers into automotive assembly-line operations. This allows automotive OEM design to take advantage of the unique molding shapes for side outers and fenders while reducing weight, assembly (DFA) and time/operations costs (DFM). Polyurea RRIM body panels have been successful in meeting the demanding auto industry requirement for lightweight, damage-resistant exterior outer panels as an economical alternative to steel. Design freedom advantages, low prototype cost and tooling savings through predictive modelling have allowed the commercial use of RRIM body panels. This high-temperature-resistant polyurea RRIM composite allows on-line painting, including passing through the steel corrosion protection primer (E-coat) cure environments.
Technical Paper

Dow Magnesium-An SQC Success Story

1986-02-01
860286
New efforts to improve quality control through the use of Statistical Quality Control techniques were introduced to the Dow Magnesium Extraction Process. All the employees in the magnesium plants were trained in the Statistical Quality Control procedures. Successful application has lead to improved chemical purity and reduced variability in the feed process. These improvements were followed by better reduction cell operation, improvements in alloying and casting operations. Consistent quality, high purity magnesium alloys are now available for use in automotive applications.
Technical Paper

Development of Thermoplastic Polyurethane/ABS Blends for Flexible Automotive Bumper Fascia

1990-02-01
900423
Thermoplastic polyurethane/ABS blends are being developed by The Dow Chemical Company to meet the high performance requirements for flexible bumper fascia. Features of these blends include paintability without priming, excellent low temperature impact after painting, good heat resistance, and lower specific gravity than other high performance thermoplastic materials. Thermoplastic polyurethane/ABS blends also have excellent flow properties, which will allow large, complex parts with thin walls to be molded easily.
X