Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Intake Valve Deposit Cleanup Testing as a Combustion Chamber Deposit Discriminator

1998-10-19
982714
Carefully controlled intake valve deposit (IVD) cleanup testing is found to be an effective method for differentiating the effect of the deposit control additives on combustion chamber deposits (CCD). The IVD buildup procedure produces a consistent initial level of CCD that the cleanup additive, the additive of interest, continues to build on until the end of the cleanup test. This “end of cleanup” CCD is found to be as repeatable and differentiable a measurement as tests run under the more common “keep clean” type operation. While IVD cleanup testing induces a mid-test disturbance in the form of the end of buildup measurement, it aligns well with two key CCD protocols in terms of the higher additive treat rates used and the extended total test length. In an analysis of results from IVD cleanup tests run using four different engine/vehicle procedures on seven different additives, several findings stood out.
Technical Paper

Understanding Soot Mediated Oil Thickening: Rotational Rheology Techniques to Determine Viscosity and Soot Structure in Peugeot XUD-11 BTE Drain Oils

2001-05-07
2001-01-1967
The Association des Constructeurs Européen d'Automobiles (ACEA) light duty diesel engine specifications requires a kinematic viscosity measurement technique for Peugeot XUD-11 BTE drain oils. This viscosity measurement is used to define the medium temperature dispersivity of soot in the drain oil.(1) This paper discusses the use of rotational rheology methods to measure the Newtonian character of XUD-11 drain oils. The calculation of the rate index using the Hershel Bulkley model indicates the level of non-Newtonian behavior of the drain oil and directly reflects the level of soot dispersion or agglomeration. This study shows that the more non-Newtonian the drain oil the greater the difference between kinematic and rotational viscosity measurements Oscillation (dynamic) rheological techniques are used to characterize build up of soot structure.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

The KA24E Engine Test for ILSAC GF-3.Part 2. Valve Train Wear Response to Formulation Variables

1998-10-19
982626
The work presented here is the second of two papers investigating the KA24E engine test. The first paper characterized the KA24E engine in terms of the physical and chemical operating environment it presents to lubricants. The authors investigated oil degradation and wear mechanisms, and examined the differences between the KA24E and the Sequence VE engine tests. It was shown that while the KA24E does not degrade the lubricant to the extent that occurs in the Sequence VE, wear could be a serious problem if oils are poorly formulated. This second paper examines the wear response of the KA24E to formulation variables. A statistically designed matrix demonstrated that the KA24E is sensitive to levels of secondary zinc dialkyldithiophosphate (ZDP), dispersant and calcium sulfonate detergent. This matrix also showed that the KA24E appears to have good repeatability for well formulated oils and is a reasonable replacement for the wear component of the Sequence VE.
Technical Paper

The KA24E Engine Test for ILSAC GF-3 Part 1: Engine Design, Operating Conditions and Wear Mechanisms

1998-10-19
982625
The Nissan KA24E engine test is designated to replace the Ford Sequence VE engine test as the low temperature valve train wear requirement for ILSAC (International Lubricant Standardization and Approval Committee) GF-3. The KA24E (recently designated the Sequence IV A) represents much of the current world-wide material and design technology while retaining the sliding cam/follower contact found in earlier engine designs. The work presented here is the first of two reports. In this first report, the physical and chemical environment the KA24E engine presents a lubricant is characterized and compared to those of the Sequence VE engine. Valve train materials and wear modes are investigated and described. Although chemical analysis of drain oils indicate the KA24E procedure does not degrade the lubricant to the extent seen in the Sequence VE test, valve train wear appears to proceed in a similar manner in both tests.
Technical Paper

The Impact of Passenger Car Motor Oils on Emissions Performance

2003-05-19
2003-01-1988
Throughout the evolution of the automobile, passenger car motor oils have been developed to address issues of wear, corrosion, deposit formation, friction, and viscosity stability. As a result, the internal combustion engines are now developed with the expectation that the lubricants to be used in them will deliver certain performance attributes. Metallurgies, clearances, and built-in stresses are all chosen with certain expectations from the lubricant. A family of chemicals that has been universally used in formulating passenger car motor oils is zinc dithiophosphates (ZDPs). ZDPs are extremely effective at protecting highly stressed valve train components against wear failure, especially in engine designs with a sliding contact between cams and followers. While ZDPs' benefits on wear control are universally accepted, ZDPs have been identified as the source of phosphorus, which deactivates noble metal aftertreatment systems.
Technical Paper

The Effect of Heavy Loads on Light Duty Vehicle Axle Operating Temperature

2005-10-24
2005-01-3893
With the continued growth of the sport utility vehicle (SUV) market in North America in recent years more emphasis has been placed on fluid performance in these vehicles. In addition to fuel economy the key performance area sought by original equipment manufacturers (OEMs) in general has been temperature reduction in the axle. This is being driven by warranty claims that show that one of the causes of axle failure in these type vehicles is related to overheating. The overheating is, in turn, caused by high load situations, e.g., pulling a large trailer at or near the maximum rated load limit for the vehicle, especially when the vehicle or its main subcomponents are relatively new. The excessive temperature generally leads to premature failure of seals, bearings and gears. The choice of lubricant can have a significant effect on the peak and stabilized operating temperature under these extreme conditions.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Soot Related Viscosity Increase - A Comparison of the Mack T-11 Engine Test to Field Performance

2004-10-25
2004-01-3009
Soot related viscosity increase has been reported as a field issue in some diesel engines and this led to the development of the T-11 engine test, incorporated in the Mack EO-N Premium Plus 03 specification (014 GS 12037). This study compares T-11 laboratory engine tests and vehicle field tests and seeks to confirm the correlation between them. The findings are that the T-11 test provides an effective screening tool to investigate soot related viscosity increase, and the severity of the engine test limits gives a substantial margin of safety compared to the field. A complementary study was conducted in conjunction with this work that focuses on the successful application of electrochemical sensor technology to diagnose soot content and soot related viscosity increase. This will be the subject of a separate paper.
Technical Paper

Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

2003-10-27
2003-01-3283
Recently, research and testing of oxygenated diesel fuels has increased, particularly in the area of exhaust emissions. Included among the oxygenated diesel fuels are blends of diesel fuel with ethanol, or E diesel fuels. Exhaust emissions testing of E diesel fuel has been conducted by a variety of test laboratories under various conditions of engine type and operating conditions. This work reviews the existing public data from previous exhaust emissions testing on E diesel fuel and includes new testing performed in engines of varied design. Emissions data compares E diesel fuel with normal diesel fuel under conditions of different engine speeds, different engine loads and different engine designs. Variations in performance under these various conditions are observed and discussed with some potential explanations suggested.
Technical Paper

Reducing Deposits in a DISI Engine

2002-10-21
2002-01-2660
Direct injection spark ignition (DISI) engine technology offers tremendous potential advantages in fuel savings and is likely to command a progressively increasing share of the European passenger vehicle market in the future. A concern is its propensity to form deposits on the inlet valve. In extreme cases, these deposits can lead to poor drivability and deteriorating emission performance. This inlet valve deposit build up is a well-known phenomenon in DISI engines since even additised fuel cannot wash over the back of intake valves to keep them clean. Two lubricants and two fuels were tested in a four car matrix. One of the lubricants was a fluid specifically developed by Lubrizol for DISI technology; the other was a baseline oil meeting Ford lubricants requirements and was qualified to ACEA A1/B1/ ILSAC GF2 performance level. Similarly, a baseline fuel was tested against an additised system.
Technical Paper

Over a Decade of LTMS

2004-06-08
2004-01-1891
The Lubricant Test Monitoring System (LTMS) is the calibration system methodology and protocol for North American engine oil and gear oil tests. This system, administered by the American Society for Testing Materials (ASTM) Test Monitoring Center (TMC) since 1992, has grown in scope from five gasoline engine tests to over two dozen gasoline, heavy duty diesel and gear oil tests ranging from several thousand dollars per test to almost one-hundred thousand dollars per test. LTMS utilizes Shewhart and Exponentially Weighted Moving Average (EWMA) control charts of reference oil data to assist in the decision making process on the calibration status of test stands and test laboratories. Equipment calibration is the backbone step necessary in the unbiased evaluation of candidate oils for oil quality specifications.
Technical Paper

Next Generation Torque Control Fluid Technology, Part IV: Using a New Split-μ Simulation Test for Optimizing Friction Material-Lubricant Hardware Systems

2010-10-25
2010-01-2230
Wet clutch friction devices are the primary means by which torque is transmitted through many of today's modern vehicle drivelines. These devices are used in automatic transmissions, torque vectoring devices, active on-demand vehicle stability systems and torque biasing differentials. As discussed in a previous SAE paper ( 2006-01-3271 - Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screen Test Development) a testing tool was developed to correlate to full-vehicle split-mu testing for limited slip differential applications using a low speed SAE #2 friction test rig. The SAE #2 Split-Mu Simulation is a full clutch pack component level friction test. The purpose of this test is to allow optimization of the friction material-lubricant hardware system in order to deliver consistent friction performance over the life of the vehicle.
Technical Paper

Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screening Test Development

2006-10-16
2006-01-3271
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper, we will describe a split-mu vehicle test and the development of a split-mu screening test. The screening test uses the SAE#2 friction test rig and shows how results from this test align with those from actual vehicle testing.
Technical Paper

Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Screening Test Development

2006-10-16
2006-01-3270
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation rates of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system in order to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper we will describe the development of a break-away friction screening test using a Full-Scale Low-Velocity Friction Apparatus (FS-LVFA). Additionally, we will illustrate how this screening test can be used to investigate the fundamental friction material-lubricant interactions that occur in continuously engaged limited slip differentials.
Technical Paper

Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends

2002-10-21
2002-01-2849
The search for alternative energy sources, particularly renewable sources, has led to increased activity in the area of ethanol blended diesel fuel, or E diesel. E diesel offers potential benefits in reducing greenhouse gases, reducing dependence on crude oil and reducing engine out emissions of particulate matter. However, there are some concerns about the use of E diesel in the existing vehicle fleet. One of the chief concerns of the use of E diesel is the affect of the ethanol on the lubricating properties of the fuel and the potential for fuel system wear. Additive packages that are used to formulate E diesel fuels can improve fuel lubricity and prevent abnormal fuel system wear. This work studies the lubricity properties of several E diesel blends and the diesel fuels that are used to form them. In addition to a variety of bench scale lubricity tests, injector pump tests were performed as an indicator of long term durability in the field.
Technical Paper

Low Speed Pre-Ignition (LSPI) Durability – A Study of LSPI in Fresh and Aged Engine Oils

2018-04-03
2018-01-0934
Downsized gasoline engines, coupled with gasoline direct injection (GDI) and turbocharging, have provided an effective means to meet both emissions standards and customers’ drivability expectations. As a result, these engines have become more and more common in the passenger vehicle marketplace over the past 10 years. To maximize fuel economy, these engines are commonly calibrated to operate at low speeds and high engine loads – well into the traditional ‘knock-limited’ region. Advanced engine controls and GDI have effectively suppressed knock and allowed the engines to operate in this high efficiency region more often than was historically possible. Unfortunately, many of these downsized, boosted engines have experienced a different type of uncontrolled combustion. This combustion occurs when the engine is operating under high load and low speed conditions and has been named Low Speed Pre-Ignition (LSPI). LSPI has shown to be very damaging to engine hardware.
Technical Paper

Jet Fuel Thermal Stability Additives - Electrical Conductivity and Interactions with Static Dissipator Additive

2002-05-06
2002-01-1652
The primary goal of the USAF JP-8+100 thermal stability additive (TSA) program is to increase the heat-sink capacity of JP-8 fuel by 50%. Current engine design is limited by a fuel nozzle temperature of 325°F (163°C); JP-8+100 has been designed to allow a 100°F increase in nozzle temperatures up to 425°F (218°C) without serious fuel degradation leading to excessive deposition. Previous studies have shown that TSA formulations increase the electrical conductivity of base jet fuel. In the present paper, further characterization of this phenomenon is described, as well as interactions of newer TSAs with combinations of SDA and other surface-active species in hydrocarbons, will be discussed.
Technical Paper

Jet Fuel Thermal Stability - Lab Testing for JP8+100

2002-05-06
2002-01-1651
The continued development of more powerful aviation turbine engines has demanded greater thermal stability of the fuel as a high temperature heat sink. This in turn requires better definition of the thermal stability of jet fuels. Thermal stability refers to the deposit-forming tendency of the fuel. It is generally accepted that dissolved oxygen initiates the deposition process in freshly refined fuels. While there are many tests that are designed to measure or assess thermal stability, many of these either do not display sufficient differentiation between fuels of average stability (JP-8) and intermediate stability (JP-8+100, JP-TS), or require large test equipment, large volumes of fuels and/or are costly. This paper will discuss the use of three laboratory tests as “concept thermal stability prediction” tools with aviation fuels, including Jet A-1 or JP-8, under JP8+100 test conditions.
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
X