Refine Your Search

Topic

Search Results

Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Technical Paper

The Single Technology Matrix Process For Base Oil Interchange

2002-10-21
2002-01-2676
The Engine Oil Industry Base Oil Interchange (BOI) and Viscosity Grade Read Across (VGRA) guidelines developed by the American Petroleum Institute (API) provide a means to significantly reduce the time to market for current technology engine oils. This process has several advantages including the public display of data and a consensus evaluation of the submitted data. The process also has several limitations including timeliness of the consensus process, and the applicability and flexibility of an all-encompassing, industry-wide guideline. An enhancement to the all-encompassing, industry-wide consensus process is the Single Technology Matrix (STM). The idea behind this approach is to use sufficient data from a single technology to develop and use BOI for that specific technology. The advantages of the STM include improved technical merit, timeliness and flexibility in establishing BOI.
Technical Paper

The Effect of Heavy Loads on Light Duty Vehicle Axle Operating Temperature

2005-10-24
2005-01-3893
With the continued growth of the sport utility vehicle (SUV) market in North America in recent years more emphasis has been placed on fluid performance in these vehicles. In addition to fuel economy the key performance area sought by original equipment manufacturers (OEMs) in general has been temperature reduction in the axle. This is being driven by warranty claims that show that one of the causes of axle failure in these type vehicles is related to overheating. The overheating is, in turn, caused by high load situations, e.g., pulling a large trailer at or near the maximum rated load limit for the vehicle, especially when the vehicle or its main subcomponents are relatively new. The excessive temperature generally leads to premature failure of seals, bearings and gears. The choice of lubricant can have a significant effect on the peak and stabilized operating temperature under these extreme conditions.
Technical Paper

Test Techniques for the Evaluation of Lubricant Effects on Axle Break-in Temperature - Investigation with an Integrally Built Rear Axle of a European Sedan

1976-02-01
760327
It has been recognized for many years that multipurpose axle lubricants give rise to much higher axle break-in temperatures than lead-soap, active-sulfur or sulfur-chlorine-lead lubricants. Evaluation of differences in axle lubricant break-in temperature between the various multipurpose gear lubricants has been complicated by lack of repeatability and reproducibility. The work described in this paper shows that one of the most important variables affecting axle break-in temperature, under the conditions of the test technique used, was torsional axle preload and that control of dimensional preload in itself is not sufficient to ensure good test repeatability. The test technique described here has been used to evaluate the axle lubricant break-in temperature properties of several sulfur-phosphorus multipurpose gear lubricants.
Technical Paper

Systematic Formulation of Efficient and Durable Axle Lubricants for Light Trucks and Sport Utility Vehicles

2004-10-25
2004-01-3030
Consumer demand for size, weight and horsepower has dictated a prominent role for sport utility vehicles and light trucks in the product lines of major North American automobile manufacturers. Inherently less efficient than passenger cars, these vehicles will be facing more stringent light duty CAFE (Corporate Average Fuel Economy) standards beginning in 2005 when mileage targets will be elevated to 21 mpg; this figure will be further increased to 22.2 mpg by 2007. In order to accommodate both public demand and CAFE requirements, vehicle manufacturers are seeking ways to improve fuel economy through design and material modifications as well as through improvements in lubrication. The axle lubricant may have an important impact on fuel economy, and axle lubricants can be tailored to deliver higher levels of operating efficiency over a wide range of conditions.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Soot-Related Viscosity Increase - Further Studies Comparing the Mack T-11 Engine Test to Field Performance

2005-10-24
2005-01-3714
SAE 2004-01-3009 reported on work conducted to investigate the correlation between the Mack T-11 laboratory engine tests and vehicle field tests. It concluded that the T-11 test provides an effective screening tool to investigate soot-related viscosity increase, and the severity of the engine test limits provides a substantial margin of safety compared to the field. This follow-up paper continues the studies on the 2003 Mack CV713 granite dump truck equipped with an AI-427 internal EGR engine and introduces experimentation on a 2003 CX613 tractor unit equipped with an AC-460P cooled EGR engine. The paper further assesses the correlation of the field trials to the Mack T-11 engine test and reviews the impact of ultra low sulfur diesel (ULSD) and prototype CJ-4 lubricant formulations in these engines.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

Next Generation Torque Control Fluid Technology, Part II: Split-Mu Screening Test Development

2006-10-16
2006-01-3271
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper, we will describe a split-mu vehicle test and the development of a split-mu screening test. The screening test uses the SAE#2 friction test rig and shows how results from this test align with those from actual vehicle testing.
Technical Paper

Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Screening Test Development

2006-10-16
2006-01-3270
The popularity of SUVs and light trucks in North America, combined with the return to rear-wheel-drive cars globally, is significantly increasing the installation rates of torque control devices that improve vehicle stability and drivability. As with other driveline hardware, it is important to optimize the friction material-lubricant-hardware system in order to ensure that a torque control device provides consistent performance over the life of the vehicle. While there are many publications on friction tests relevant to automatic transmission fluids, the literature relating to torque control testing is not as well developed. In this paper we will describe the development of a break-away friction screening test using a Full-Scale Low-Velocity Friction Apparatus (FS-LVFA). Additionally, we will illustrate how this screening test can be used to investigate the fundamental friction material-lubricant interactions that occur in continuously engaged limited slip differentials.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Jet Fuel Low Temperature Operability

2002-05-06
2002-01-1650
Jet-A and Jet-A-1 have fueled commercial and military jets for decades. With -40°C and -47°C freeze point specifications respectively, Jet-A and Jet-A-1 have adequate low temperature operability for the current demands of jet-powered planes. However next generation military and commercial jet aircraft will need fuels with improved low temperature performance to reap the benefits of flying higher, longer and taking polar routes. The extreme cold these new routes will expose jet fuel to makes it necessary to have fuel that flows at much lower temperatures than is currently available. Changing the jet fuel refining conditions can achieve the desired low temperature characteristics however this is very expensive.
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Technical Paper

How Polymer Architecture Affects Permanent Viscosity Loss of Multigrade Lubricants

1998-10-19
982638
Multigrade automotive lubricants contain polymeric viscosity modifiers which enable the oil to provide adequate hydrodynamic lubrication at high temperatures and good starting/pumping performance at low temperatures. Under operating conditions in engines, transmissions and gear boxes, polymeric additives undergo both temporary and permanent viscosity loss. The former is caused by flow orientation and the latter by molecular chain scission. Whatever the mechanism, original equipment manufacturers are interested in maintaining a minimum level of hydrodynamic viscosity from oil change to oil change. This is often expressed as a “stay-in-grade” requirement. Commercial viscosity modifiers (VM) span a wide range of chemistries and molecular architectures.
Technical Paper

Field Experience with Selected Lubricants for Commercial Vehicle Manual Transmissions

2005-05-11
2005-01-2176
Laboratory testing is an essential part of product development. However, it usually only reflects a small portion of the experience that a lubricant may see in actual service conditions. Many laboratory tests are designed to only address one or two facets of what is deemed to be critical performance areas. Since it is difficult to cover all of the critical performance conditions problems sometimes arise in service that were not anticipated by the laboratory test. Or, conversely, some above average performance evolves during service that was not observed in a specific laboratory test. This paper highlights the overall performance of four manual transmission fluids approved or accepted by the manufacturer for this application. The evaluations were conducted in a city bus fleet with the test buses assigned to the same route for approximately 300,000 km over 30 months.
Technical Paper

Extending Injector Life in Methanol-Fueled DDC Engines Through Engine Oil and Fuel Additives

1990-10-01
902227
Considerable development effort has shown that conventional diesel engine lubricating oil specifications do not define the needs for acceptable injector life in methanol-fueled, two-stroke cycle diesel engines. A cooperative program was undertaken to formulate an engine oil-fuel additive system which was aimed at improving performance with methanol fueling. The performance feature of greatest concern was injector tip plugging. A Taguchi matrix using a 100 hour engine test was designed around an engine oil formulation which had performed well in a 500 hour engine test using a simulated urban bus cycle. Parameters investigated included: detergent level and type, dispersant choice, and zinc dithiophosphate level. In addition, the influence of a supplemental fuel additive was assessed. Analysis of the Taguchi Matrix data shows the fuel additive to have the most dramatic beneficial influence on maintaining injector performance.
Technical Paper

Extended-Drain ATF Field Testing in City Transit Buses

2003-05-19
2003-01-1985
City transit buses are a severe environment for an automatic transmission fluid. The fluid must endure very high operating temperatures because of the use of brake retarders, frequent stop-and-go driving, and numerous shifts. There is an increasing trend toward the use of extended-drain, synthetic-based ATFs for such severe service applications. This paper documents a field trial with both synthetic and petroleum-based ATFs at a large municipal bus fleet in Southern California. Three different commercial ATFs, made with either API Group 2, 3, or 4 base oils, respectively, were compared after roughly 80,000 km. and one year of operation. Because of different additive packages in each fluid, not all of the results can be explained by base oil effects alone. However, the base oil is certainly a dominant contributor to the finished fluid performance. The following four variables were monitored by used oil analysis: iron wear, copper wear, viscosity change, and acid number change.
Technical Paper

Evaluating the Impact of Oil Viscoelasticity on Bearing Friction

2023-10-31
2023-01-1648
In this work, a novel bearing test rig was used to evaluate the impact of oil viscoelasticity on friction torque and oil film thickness in a hydrodynamic journal bearing. The test rig used an electric motor to rotate a test journal, while a hydraulic actuator applied radial load to the connecting rod bearing. Lubrication of the journal bearing was accomplished via a series of axial and radial drillings in the test shaft and journal, replicating oil delivery in a conventional engine crankshaft. Journal bearing inserts from a commercial, medium duty diesel engine (Cummins ISB) were used. Oil film thickness was measured using high precision eddy current sensors. Oil film thickness measurements were taken at two locations, allowing for calculation of minimum oil film thickness. A high-precision, in-line torque meter was used to measure friction torque. Four test oils were prepared and evaluated.
Technical Paper

Energy Conservation Through The Use of Multigraded Gear Oils In Trucks

1977-02-01
770833
Studies of selected automotive gear lubricants in heavy truck tandem axles and transmissions have revealed improvements in fuel economy associated with the viscosity of lubricants tested (grades 75W, 75W-90, and 80W-140). The testing included a heavy truck on-highway fleet test and test track operation. Standard laboratory gear tests on light viscosity monograde (SAE 75W) oils indicate that oils of this type may be deficient in EP protection. Combined observations show that there may be a critical balance between axle lubricant fuel economy benefits and axle durability in field service.
Technical Paper

Development of Next-Generation Automatic Transmission Fluid Technology

2007-10-29
2007-01-3976
Global original equipment manufacturers (OEMs) have requested lower viscosity automatic transmission fluid (ATF) for use in conventional and 6-speed automatic transmissions (AT) to meet growing demands for improved fuel economy. While lower-viscosity ATF may provide better fuel economy by reducing churning losses, other key performance attributes must be considered when formulating lower viscosity ATF(1,2). Gear and bearing performance can be key concerns with lower-viscosity ATFs due to reduced film thickness at the surfaces. Long-term anti-shudder performance is also needed to enable the aggressive use of controlled slip torque converter clutches that permit better fuel economy. And, friction characteristics need to be improved for higher clutch holding capacity and good clutch engagement performance. This paper covers the development of next-generation, low-viscosity ATF technology, which provides optimum fuel economy along with wear and friction durability.
X