Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Residual Forming Effects on Full Vehicle Frontal Impact and Body-in-White Durability Analyses

2002-03-04
2002-01-0640
Forming of sheet metal structures induces pre-strains, thickness variations, and residual stresses. Pre-strains in the formed structures introduce work hardening effects and change material fatigue properties such as stress-life or strain-life. In the past, crashworthiness and durability analyses have been carried out using uniform sheet thickness and stress- and strain-free initial conditions. In this paper, crashworthiness and durability analyses of hydroformed front rails, stamped engine rails and shock towers on a full vehicle and a Body-In-White structure are performed considering the residual forming effects. The forming effects on the crash performance and fatigue life are evaluated.
Technical Paper

Modeling and Experimental Correlation of Pickup Box Drum Drop Test

2003-03-03
2003-01-0604
Pickup box drum drop test is critical in vehicle development to determine the impact strength of the floor panels. Physical hardware tests on prototypes have been used to assess whether the performance of the future pickup box meets design requirements. In order to reduce costs and shorten development cycle, CAE methodology was developed to accurately model the drum drop test. In this paper, a CAE procedure for modeling the drum drop test is proposed. Dynamic explicit finite element code LS-Dyna was used to simulate the non-linear impact process of a drum onto the box floor. The permanent plastic damages on the floor panel were recorded in both simulation and experiments. Very good correlation between the simulation results and the physical hardware tests was achieved. It indicates that the methodology developed is an effective tool in evaluating the performances of the pickup box floor panels.
X