Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

In-Cylinder Mixing Rate Measurements and CFD Analyses

1999-03-01
1999-01-1110
Gas-phase in-cylinder mixing was examined by two different methods. The first method for observing mixing involved planar Mie scattering measurements of the instantaneous number density of silicon oil droplets which were introduced to the in-cylinder flow. The local value of the number density was assumed to be representative of the local gas concentration. Because the objective was to observe the rate in which gas concentration gradients change, to provide gradients in number density, droplets were admitted into the engine through only one of the two intake ports. Air only flowed through the other port. Three different techniques were used in analyzing the droplet images to determine the spatially dependent particle number density. Direct counting, a filtering technique, and autocorrelation were used and compared. Further, numerical experiments were performed with the autocorrelation method to check its effectiveness for determination of particle number density.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

2018-09-10
2018-01-1794
Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
X