Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Using Cloud Point Depressants Opportunistically To Reduce No.2 Diesel Fuel Cloud Point Giveaway

2001-05-07
2001-01-1927
Diesel fuel is a blend of various middle distillate components separated at the refinery. The composition and characteristics of the diesel fuel blend changes daily if not hourly because of normal process variation, changing refinery processing conditions, changing crude oil diet or changing diesel fuel and kerosene market conditions. Regardless of the situation going on at the refinery or the market, the resultant diesel fuel must consistently meet established cloud point specifications. To consistently meet the cloud point specifications, refiners are forced to blend their diesel fuels in such a way that the resultant blend is always on the low side of the cloud point specification even when the refining process adversely changes the fuel characteristics. This practice has the effect of producing several degrees of cloud point “giveaway” when the refinery is not experiencing adverse swings in product quality.
Technical Paper

Use of Virtual Tests in Establishing BOI/VGRA

2002-10-21
2002-01-2675
The Engine Oil Industry Base Oil Interchange (BOI) and Viscosity Grade Read Across (VGRA) guidelines developed by the American Petroleum Institute (API) provide a means to significantly reduce the time to market for current technology oils. The guidelines also allow conversion of a fraction of the millions of dollars spent each year on engine testing in pursuit of API engine oil licensing into research testing and the development of fundamental knowledge. In the past, guidelines have been developed based upon a general assessment of minimal engine test data. Recently, however, regression models have been used to assess Base Oil and Viscosity Grade effects. The use of statistical regression models and Virtual Tests in determining effects to establish BOI and VGRA has several advantages. These advantages, demonstrated through an example and a case study, include volume of data and breadth of data.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

Tooth Mesh Characterization of Spur Gear Pairs with Surface Pitting Damage

2023-04-11
2023-01-0458
A finite element/contact mechanics (FE/CM) method is used to determine the tooth contact forces, static transmission error, and tooth pair stiffnesses for spur gear pairs that have pitting damage. The pitting damage prevents portions of the tooth surface from carrying load, which results in meaningfully different contact pressure distribution on the gear teeth and deformations at the mesh. Pits of elliptical shape are investigated. Parametric analyses are used to investigate the effect of pit width (along the tooth face) and height (along the tooth profile) on the gear tooth mesh interface. Pitting damage increases static transmission error and decreases tooth pair stiffness. Tooth contact forces differ only in the portions of the mesh cycle when multiple pairs of teeth are in contact and share the transmitted load. Pitting damage does not change the loads when only a single pair of teeth are in contact.
Technical Paper

The Research on Edge Tearing with Digital Image Correlation

2015-04-14
2015-01-0593
Material formability is a very important aspect in the automotive stamping, which must be tested for the success of manufacturing. One of the most important sheet metal formability parameters for the stamping is the edge tear-ability. In this paper, a novel test method has been present to test the aluminum sheet edge tear-ability with 3D digital image correlation (DIC) system. The newly developed test specimen and fixture design are also presented. In order to capture the edge deformation and strain, sample's edge surface has been sprayed with artificial speckle. A standard MTS tensile machine was used to record the tearing load and displacement. Through the data processing and evaluation of sequence image, testing results are found valid and reliable. The results show that the 3D DIC system with double CCD can effectively carry out sheet edge tear deformation. The edge tearing test method is found to be a simple, reliable, high precision, and able to provide useful results.
Technical Paper

The Impact of Passenger Car Motor Oils on Emissions Performance

2003-05-19
2003-01-1988
Throughout the evolution of the automobile, passenger car motor oils have been developed to address issues of wear, corrosion, deposit formation, friction, and viscosity stability. As a result, the internal combustion engines are now developed with the expectation that the lubricants to be used in them will deliver certain performance attributes. Metallurgies, clearances, and built-in stresses are all chosen with certain expectations from the lubricant. A family of chemicals that has been universally used in formulating passenger car motor oils is zinc dithiophosphates (ZDPs). ZDPs are extremely effective at protecting highly stressed valve train components against wear failure, especially in engine designs with a sliding contact between cams and followers. While ZDPs' benefits on wear control are universally accepted, ZDPs have been identified as the source of phosphorus, which deactivates noble metal aftertreatment systems.
Technical Paper

The Impact of Lubricant and Fuel Derived Sulfur Species on Efficiency and Durability of Diesel NOx Adsorbers

2004-10-25
2004-01-3011
Global emission legislations for diesel engines are becoming increasingly stringent. While the exhaust gas composition requirements for prior iterations of emission legislation could be met with improvements in the engine's combustion process, the next issue of European, North American and Japanese emission limits greater than 2005 will require more rigorous measures, mainly employment of exhaust gas aftertreatment systems. As a result, many American diesel OEMs are considering NOx adsorbers as a means to achieve 2007+ emission standards. Since the efficacy of a NOx adsorber over its lifetime is significantly affected by sulfur (“sulfur poisoning”), forthcoming reductions in diesel fuel sulfur (down to 15 ppm), have raised industry concerns regarding compatibility and possible poisoning effects of sulfur from the lubricant.
Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Technical Paper

Tensile Test for Polymer Plastics with Extreme Large Elongation Using Quad-Camera Digital Image Correlation

2016-04-05
2016-01-0418
Polymer plastics are widely used in automotive light weight design. Tensile tests are generally used to obtain material stress-strain curves. Due to the natural of the plastic materials, it could be elongated more than several hundred percent of its original length before breaking. Digital Image Correlation (DIC) Analysis is a precise, full field, optical measurement method. It has been accepted as a practical in-field testing method by the industry. However, with the traditional single-camera or dual-camera DIC system, it is nearly impossible to measure the extreme large strain. This paper introduces a unique experimental procedure for large elongation measurement. By utilization of quad-camera DIC system and data stitch technique, the strain history for plastic material under hundreds percent of elongation can be measured. With a quad-camera DIC system, the correlation was conducted between two adjacent cameras.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Study on Frictional Behavior of AA 6XXX with Three Lube Conditions in Sheet Metal Forming

2018-04-03
2018-01-0810
Light-weighting vehicles cause an increase in Aluminum Alloy stamping processes in the Automotive Industry. Surface finish and lubricants of aluminum alloy (AA) sheet play an important role in the deep drawing processes as they can affect the friction condition between the die and the sheet. This paper aims to develop a reliable and practical laboratory test method to experimentally investigate the influence of surface finish, lubricant conditions, draw-bead clearances and pulling speed on the frictional sliding behavior of AA 6XXX sheet metal. A new double-beads draw-bead-simulator (DBS) system was used to conduct the simulated test to determine the frictional behavior of an aluminium alloy with three surface lubricant conditions: mill finish (MF) with oil lube, electric discharge texture (EDT) finish with oil lube and mill finish (MF) with dry lube (DL).
Technical Paper

Study of Incremental Bending Test on Aluminum Sheets

2018-04-03
2018-01-0807
Bendability is one of the most important formability characteristics in sheet metal forming, so it has to be understood for robust aluminum stamping process designs. Crack is one of the major failure modes in aluminum sheet bending. In this study, a new “incremental bending” method is proposed to reduce the risk of bending failure. A novel laboratory test methodology is conducted to test the 5xxx series aluminum sheet bendability with 3D digital image correlation (DIC) measurement system. The designs of test apparatus and test procedure are introduced in this paper. Through the data processing and evaluation of a sequence image acquisition, the major strain histories within the zone of the through thickness crack of test samples are measured. Testing results show that incremental bending is capable of reducing peak strain on the outer surface obviously compared with traditional non-incremental bending. The more step, more movement, the more peak strain reduction.
Technical Paper

Sensitivity Study of Probit and Two-Point Fatigue Testing Methods

2006-04-03
2006-01-0536
Fatigue strength mean and standard deviation may be estimated by the Probit and 2-Point test methods. In this paper, methodologies for conducting the tests are developed and results from Monte Carlo simulation are presented. The results are compared with those from concurrent testing with the staircase method. While the Probit and 2-Point methods are intuitively attractive, their results are significantly different from those from the staircase method. The latter remains the best of the three.
Journal Article

Scuffing Behavior of 4140 Alloy Steel and Ductile Cast Iron

2012-04-16
2012-01-0189
Scuffing is a failure mechanism which can occur in various engineering components, such as engine cylinder kits, gears and cam/followers. In this research, the scuffing behavior of 4140 steel and ductile iron was investigated and compared through ball-on-disk scuffing tests. A step load of 22.2 N every two minutes was applied with a light mineral oil as lubricant to determine the scuffing load. Both materials were heat treated to various hardness and tests were conducted to compare the scuffing behavior of the materials when the tempered hardness of each material was the same. Ductile iron was found to have a consistently high scuffing resistance before tempering and at tempering temperatures lower than 427°C (HRC ≻45). Above 427°C the scuffing resistance decreases. 4140 steel was found to have low scuffing resistance at low tempering temperatures, but as the tempering temperature increases, the scuffing resistance increased.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Reliability Analysis Using Monte Carlo Simulation and Response Surface Methods

2004-03-08
2004-01-0431
An accurate and efficient Monte Carlo simulation (MCS) method is developed in this paper for limit state-based reliability analysis, especially at system levels, by using a response surface approximation of the failure indicator function. The Moving Least Squares (MLS) method is used to construct the response surface of the indicator function, along with an Optimum Symmetric Latin Hypercube (OSLH) as the sampling technique. Similar to MCS, the proposed method can easily handle implicit, highly nonlinear limit-state functions, with variables of any statistical distributions and correlations. However, the efficiency of MCS can be greatly improved. The method appears to be particularly efficient for multiple limit state and multiple design point problem. A mathematical example and a practical example are used to highlight the superior accuracy and efficiency of the proposed method over traditional reliability methods.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Technical Paper

Piston Secondary Dynamics Considering Elastohydrodynamic Lubrication

2007-04-16
2007-01-1251
An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model including elastohydrodynamic (EHD) lubrication at the bore-skirt interface. A piston EHD analysis is used based on a finite-difference formulation. The oil film is discretized using a two-dimensional mesh. For improved computational efficiency without loss of accuracy, the Reynolds’ equation is solved using a perturbation approach which utilizes an “influence zone” concept, and a successive over-relaxation solver. The analysis includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading and piston barrelity and ovality. A Newmark-Beta time integration scheme combined with a Newton-Raphson linearization, calculates the piston secondary motion.
Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
X