Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Development of a Heavy Truck ABS Model

2005-04-11
2005-01-0413
This paper discusses the improvement of a heavy truck anti-lock brake system (ABS) model currently used by the National Highway Traffic Safety Administration (NHTSA) in conjunction with multibody vehicle dynamics software. Accurate modeling of this complex system is paramount in predicting real-world dynamics, and significant improvements in model accuracy are now possible due to recent access to ABS system data during on-track experimental testing. This paper focuses on improving an existing ABS model to accurately simulate braking under limit braking maneuvers on high and low-coefficient surfaces. To accomplish this, an ABS controller model with slip ratio and wheel acceleration thresholds was developed to handle these scenarios. The model was verified through testing of a Class VIII 6×4 straight truck. The Simulink brake system and ABS model both run simultaneously with TruckSim, with the initialization and results being acquired through Matlab.
Technical Paper

New Model for Simulating the Dynamics of Pneumatic Heavy Truck Brakes with Integrated Anti-Lock Control

2003-03-03
2003-01-1322
This paper introduces a new nonlinear model for simulating the dynamics of pneumatic-over-mechanical commercial vehicle braking systems. The model employs an effective systems approach to accurately reproduce forcing functions experienced at the hubs of heavy commercial vehicles under braking. The model, which includes an on-off type ABS controller, was developed to accurately simulate the steer, drive, and trailer axle drum (or disc) brakes on modern heavy commercial vehicles. This model includes parameters for the pneumatic brake control and operating systems, a 4s/4m (four sensor, four modulator) ABS controller for the tractor, and a 2s/2m ABS controller for the trailer. The dynamics of the pneumatic control (treadle system) are also modeled. Finally, simulation results are compared to experimental data for a variety of conditions.
Technical Paper

Empirical Models for Commercial Vehicle Brake Torque from Experimental Data

2003-03-03
2003-01-1325
This paper introduces a new series of empirical mathematical models developed to characterize brake torque generation of pneumatically actuated Class-8 vehicle brakes. The brake torque models, presented as functions of brake chamber pressure and application speed, accurately simulate steer axle, drive axle, and trailer tandem brakes, as well as air disc brakes (ADB). The contemporary data that support this research were collected using an industry standard inertia-type brake dynamometer, routinely used for verification of FMVSS 121 commercial vehicle brake standards.
Technical Paper

Derivation and Validation of New Analytical Planar Models for Simulating Multi-Axle Articulated Vehicles

2004-03-08
2004-01-1784
This paper discusses the derivation and validation of planar models of articulated vehicles that were developed to analyze jackknife stability on low-μ surfaces. The equations of motion are rigorously derived using Lagrange's method, then linearized for use in state-space models. The models are verified using TruckSim™, a popular nonlinear solid body vehicle dynamics modeling package. The TruckSim™ models were previously verified using extensive on-vehicle experimental data [1, 2]. A three-axle articulated model is expanded to contain five axles to avoid lumping the parameters for the drive and semitrailer tandems. Compromises inherent in using the linearized models are discussed and evaluated. Finally, a nonlinear tire cornering force model is coupled with the 5-axle model, and its ability to simulate a jackknife event is demonstrated. The model is shown to be valid over a wide range of inputs, up to and including loss of control, on low-and-medium-μ surfaces.
X