Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Impact of Some Gear Lubricants on the Surface Durability of Rolling Element Bearings

2006-04-03
2006-01-0357
The additive chemistry of some gear lubricants can have a major impact on the surface durability of rolling element bearings (1). Lubricant formulation has been slanted heavily toward protecting gear concentrated contacts from galling and wear. As such, much of the performance differentiation of lubricants has been dependent on highly accelerated, standardized laboratory tests related to gears. Methods have been proposed to evaluate and quantify a lubricant's performance characteristics as they relate to rolling element bearings (2). Results from several lubricant performance evaluations are presented. The implications of these findings suggest that the detrimental performance effects on rolling element bearings need further fundamental study by the lubricant industry.
Technical Paper

Performance Evaluation of a Potential New Engineered Surface for Enhanced Concentrated Tribological Contacts

1998-04-08
981475
The aspects of real engineering surfaces are discussed with regard to their three-dimensional nature. A review of potential uses of surface finish measurement methods is discussed for characterization of functional surfaces. Using an optical-based system and a set of specific measurement procedures, two functional surfaces with different roughness were analyzed to illustrate a typical surface topography evaluation. A simple sliding test was then utilized to show that a special finish produced by a proprietary finishing process can provide improved performance, as measured by wear differences, frictional properties and operating temperature of the system. A special surface treatment was then evaluated in conjunction with the special finish in order to enhance its functional load support. Simple sliding test results indicates a potential new engineered surface for improving tribological contact performance.
Technical Paper

Methods for Assessing the Bearing Surface Durability Performance of Lubricant Formulations

2005-10-24
2005-01-3808
Lubricant formulations and lubricant additives have been demonstrated to have a major impact on the surface durability of rolling element bearings. However, there are very few standard tests used to assess the performance aspects of lubricants as they relate to bearing surface performance. Lubricant formulations have been slanted heavily toward protecting gear concentrated contacts from galling and wear. In addition, much of the performance differentiation of lubricants has been dependent on highly accelerated, standardized laboratory tests related to gears. Methods have been developed for properly evaluating a lubricant's performance characteristics as they relate to bearings. These methods are explained and the corresponding test results are reviewed, to show their effectiveness as lubricant performance evaluation tools.
Technical Paper

Improving the Performance of Rolling Element Bearings with Nanocomposite Tribological Coatings

2006-10-31
2006-01-3555
This study summarizes the development, characterization, and application of nanocomposite tribological coatings on rolling element bearings. Nanocomposite coatings consisting of nanocrystalline metal carbides embedded in amorphous hydrocarbon or carbon matrices (MC/aC:H or MC/aC) have been used to increase the fatigue life under boundary layer lubrication, provide debris tolerance, eliminate false brinelling, increase the operational speed, decrease the friction, and provide oil-out protection to rolling element bearings. MC/aC:H coatings are applied by magnetron sputtering at substrate temperature less than 180 °C, have small friction coefficients, high fracture strength, and can have hardness and modulus values twice and half that of carburized steel, respectively.
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
Technical Paper

Assessing and Predicting the Performance of Bearings in Debris Contaminated Lubrication Environment

1999-09-13
1999-01-2791
Many lubrication environments in various equipment applications are inherently contaminated with debris and require mechanical components that are, as much as possible, resistant to the potential detrimental effects of debris particles. Many design engineers and lubricant specialists often overlook potential relationships between the various component failure modes, lubricant debris contamination level and the engineering solutions that are created to overcome them. Various methods for evaluating the effectiveness of debris resistant bearings have been proposed for development. Some of these methods have become standard methods within each bearing manufacturer's organization. Using an experimental method, performance evaluation results of tapered roller bearings in the areas of material fatigue will be discussed. The potential performance advantages will be placed in context of understanding the performance needs in the application.
Technical Paper

Air-Melted Steel With Ultra-Low Inclusion Stringer Content Further Improves Bearing Fatigue Life

1987-11-08
871208
Economical steels with improved fatigue life performance continue to be sought for more demanding applications such as in the automotive and aerospace industries. Researchers at The Timken Company, pursuing improved fatigue performance in tapered roller bearings, have found that life is limited by large inclusion stringers that still exist in today's highly publicized steels. Stringers, by definition, are clusters of individual oxide particles observable in wrought steel. An ultrasonic method has been used to quantify the frequency of these stringers in steel in bearing components. The total length of these stringers has been correlated with bearing fatigue life. The use of this ultrasonic tool has expedited the development of the newly introduced Parapretnium™ steel. This air-melted steel has a stringer content less than nearly all of the other worldwide bearing steels evaluated and, in fact, its stringer content is approaching those low levels found only in vacuum-remelted steels.
X