Refine Your Search

Topic

Search Results

Technical Paper

Using Vehicle Dynamics Simulation as a Teaching Tool in Automotive Engineering Courses

2005-04-11
2005-01-1795
Some of the best teaching methods are laboratory courses in which students experience application of the principles being presented. Preparing young engineering students for a career in the automotive industry challenges us to provide comparable opportunities to explore the dynamic performance of motor vehicles in a controlled environment. Today we are fortunate to have accurate and easy-to-use software programs making it practical for students to simulate the performance of motor vehicles on “virtual” proving grounds. At the University of Michigan the CarSim® vehicle dynamics simulation program has been introduced as such a tool to augment the learning experience. The software is used in the Automotive Engineering course to supplement homework exercises analyzing acceleration, braking, aerodynamics, and cornering performance. This paper provides an overview of the use of simulation in this setting.
Technical Paper

The Prospects of Using Alcohol-Based Fuels in Stratified-Charge Spark-Ignition Engines

2007-10-29
2007-01-4034
Near-term energy policy for ground transportation is likely to have a strong focus on both gains in efficiency as well as the use of alternate fuels; as both can reduce crude oil dependence and carbon loading on the environment. Stratified-charge spark-ignition direct-injection (SIDI) engines are capable of achieving significant gains in efficiency. In addition, these engines are likely to be run on alternative fuels. Specifically, lower alcohols such as ethanol and iso-butanol, which can be produced from renewable sources. SIDI engines, particularly the spray-guided variant, tend to be very sensitive to mixture preparation since fuel injection and ignition occur within a short time of each other. This close spacing is necessary to form a flammable mixture near the spark plug while maintaining an overall lean state in the combustion chamber. As a result, the physical properties of the fuel have a large effect on this process.
Technical Paper

The Influence of Inlet Air Conditions on Carburetor Metering

1966-02-01
660119
This paper provides data concerning the enrichment of automotive carburetors with variation of inlet air pressure and temperature. These changes occur with weather and the seasons, with altitude, and because of underhood heating. The early opening of the conventional carburetor enrichment value at altitude can add greatly to the “ normal” carburetor enrichment. Means for compensating the mixture ratio for these changes in inlet air conditions are known, but will almost certainly add to the complexity and cost of the engine induction system. The cost of improved devices must be compromised with the possible reduction in exhaust emissions and improvement in fuel economy.
Technical Paper

Support Vector Machine-Based Determination of Gasoline Direct Injected Engine Admissible Operating Envelope

2002-03-04
2002-01-1301
Support Vector Machines (SVMs) have been gaining popularity as classifiers with good generalization ability. In an attempt to study their applicability to typical automotive problems, this paper investigates the modeling of the operating envelope for a direct injection gasoline (GDI) engine. This envelope defines the admissible ranges for key engine operating variables so that specified conditions on engine roughness and misfire are satisfied. The SVM model of the operating envelope is subsequently used by the engine control strategy to set engine operating variables such as spark and injection timing to avoid excessive engine roughness and misfire. Findings and conclusions from this study related to generalization ability and complexity of the SVM classifier models are summarized.
Technical Paper

Slip Resistance Predictions for Various Metal Step Materials, Shoe Soles and Contaminant Conditions

1987-11-01
872288
The relationship of slip resistance (or coefficient of friction) to safe climbing system maneuvers on high profile vehicles has become an issue because of its possible connection to falls of drivers. To partially address this issue, coefficients of friction were measured for seven of the more popular fabricated metal step materials. Evaluated on these steps were four types of shoe materials (crepe, leather, ribbed-rubber, and oil-resistant-rubber) and three types of contaminant conditions (dry, wet-water, and diesel fuel). The final factor evaluated was the direction of sole force application. Results showed that COF varied primarily as a function of sole material and the presence of contaminants. Unexpectedly, few effects were attributible to the metal step materials. Numerous statistical interactions suggested that adequate levels of COF are more likely to be attained by targeting control on shoe soles and contaminants rather than the choice of a particular step material.
Technical Paper

SIMULATION OF A VEHICLE SUSPENSION WITH THE ADAMS COMPUTER PROGRAM

1977-02-01
770053
This paper describes a computer simulation of the front suspension of a 1973 Chevrolet Malibu using the ADAMS (Automatic Dynamic Analysis of Mechanical Systems) computer program. The model was proposed by the SAE Fatigue Design and Evaluation Committee for evaluating the speed, economy and accuracy of various computer simulations in predicting displacements and loads in a suspension system. A comparison between experimental and simulated results is given.
Technical Paper

Reactor Studies for Exhaust Oxidation Rates

1973-02-01
730203
A laboratory test reactor has been used to determine the rates of oxidation of carbon monoxide (CO), hydrocarbons (HCs) as a class, and hydrogen (H2). The feed was supplied from the exhaust of a single-cylinder engine, with additions of H2 and CO in some runs. The test reactor was designed to be well mixed, and this was verified experimentally for mixing on macroscopic and microscopic scales. Wall effects were found to be unimportant. Kinetic data from 157 runs were correlated with global reaction rate expressions containing Arrhenius temperature dependence and power law concentration dependence. CO oxidation was found to be approximately 1/4 order in CO with an activation energy of 28,200 cal/g-mole. HC oxidation was found to be approximately 1/4 order in HC and 1/2 order in each of O2, CO, and NO with an activation energy of 29,800 cal/g-mole. H2 oxidation rates were not well correlated, but a zero-order rate with an activation energy of 52,000 cal/g-mole is reasonable.
Technical Paper

Prediction of Head Orientation based on the Visual Image of a Three Dimensional Space

2001-06-26
2001-01-2092
Head movements contribute to the acquisition of targets in visually guided tasks such as reaching and grasping. It has been found that head orientation is generally related to the spatial location of the visual target. The movements of the head in a three-dimensional space are described using six degrees of freedom including translations along x-, y- and z-axis plus rotations about x-, y- and z-axis. While the control of head movement is heavily dependent upon visual perception, head movements lead to a change in the visual perception of the task space as well. In the present study we analyzed head movements in a set of driving simulation experiments. Also a theoretical reconstruction of the perceived task space after head movements was modeled by a statistical regression. This process included the transformation of the task space from a global reference frame (earth-fixed) into a perceived space in a head-centered reference frame (head-fixed).
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

Is Toluene a Suitable LIF Tracer for Fuel Film Measurements?

2004-03-08
2004-01-1355
Quantitative LIF measurements of liquid fuel films on the piston of direct-injected gasoline engines are difficult to achieve because generally these films are thin and the signal strength is low. Additionally, interference from scattered laser light or background signal can be substantial. The selection of a suitable fluorescence tracer and excitation wavelength plays an important role in the success of such measurements. We have investigated the possibility of using toluene as a tracer for fuel film measurements and compare it to the use of 3-pentanone. The fuel film dynamics in a motored engine at different engine speeds, temperatures and in-cylinder swirl levels is characterized and discussed.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Inhomogeneities in HCCI Combustion: An Imaging Study

2005-05-11
2005-01-2122
A four-valve-pentroof, direct-injection, optical engine fueled with n-heptane has been operated at four different steady-state HCCI operating conditions including 10% and 65% residuals, both at low and high swirl conditions. Both, planar toluene LIF and volume chemiluminescence show large scale inhomogeneity in the ensemble averaged images. The interpretation of the toluene-tracer LIF signals (when premixed with the fresh-air charge) as a marker for reaction homogeneity is discussed. A binarization scheme and a statistical analysis of the LIF images were applied to the per-cycle planar-LIF images revealing inhomogeneities both from cycle-to-cycle and within the regions of individual cycles that track with the average heat release rate. Comparison of these two homogeneity metrics between the four operating conditions reveals weak but discernable differences.
Technical Paper

Influence of Fuel Properties on Metering in Carburetors

1971-02-01
710207
This paper considers the influence of the properties of gasolines and testing fluids on metering by carburetors. Since the fuel metering is controlled by orifices, the effects of fuel properties on orifice flow are analyzed. The results of an orifice testing program are presented, using the Reynolds number as the primary correlation parameter. The influences of fuel type, fuel temperature, and orifice geometry on the discharge coefficient are discussed, and the effect of a given fuel property change is shown. Experimental values for the variations in fluid properties with fuel type and temperature are presented for commercial gasolines, carburetor testing fluids, and pure hydrocarbons. The variation of carbon-to-hydrogen ratio among gasolines is shown to cause a change in stoichiometry, which is the equivalent of an error in metering.
Technical Paper

Impact of Part Variation on In-Process Coordinate Measurements for Automotive Body Assemblies

1998-09-29
982273
Coordinate measurement gages dominate in the area of dimensional control and variation reduction of automotive body assembly processes. However, coordinate measurement gages do not have the capability to track certain measured features. This incapability introduces inherent measurement error created by part (feature) mislocation in constrained non-measured directions. This inherent measurement error weakens the methods used for process control and variation reduction. In this paper, a principle of measurement uncertainty is developed in order to estimate the measurement error caused by this deficiency. The developed principle describes measurement error, which is independent of any other error related to the mechanical or optical coordinate measurement machines (CMMs, OCMMs). Additionally, an error map determined by the measurement uncertainty principle is created for error compensation.
Technical Paper

Impact of Fluorescence Tracers on Combustion Performance in Optical Engine Experiments

2004-10-25
2004-01-2975
For applications of planar laser induced fluorescence (PLIF) to measure the fuel or equivalence ratio distributions in internal combustion (IC) engines it is typically assumed that the addition of a fluorescence tracer to a base fuel does not alter the combustion performance. We have investigated the impact on combustion performance through the addition of various amounts of 3-pentanone or toluene to iso-octane fuel. Correlations between equivalence ratio for a range of fuel/tracer mixtures and engine parameters, like peak pressure, location of peak pressure, indicated mean effective pressure (IMEP), and peak burn rate are discussed for data obtained in a spark-ignition direct-injection (SIDI) gasoline engine operated with near homogeneous charge. For typical tracer concentrations the impact on combustion performance is mostly negligible.
Technical Paper

Framing Effects on Distance Perception in Rear-Vision Displays

2003-03-03
2003-01-0298
The increasing availability of camera-based displays for indirect vision in vehicles is providing new opportunities to supplement drivers' direct views of the roadway and surrounding traffic, and is also raising new issues about how drivers perceive the positions and movements of surrounding vehicles. We recently reported evidence that drivers' perception of the distance to rearward vehicles seen in camera-based displays is affected not only by the visual angles subtended by the images of those vehicles, but also by the sizes of those images relative to the sizes of the displays within which they are seen (an influence that we have referred to as a framing effect). There was also evidence for a similar, but weaker, effect with rearview mirrors.
Technical Paper

Failure of Laser Welds in Aluminum Sheets

2001-03-05
2001-01-0091
In this paper, the formability of AA5754 aluminum laser-welded blanks produced by Nd:YAG laser welding is investigated under biaxial straining conditions. The mechanical behavior of the laser-welded blanks is first examined by uniaxial tensile tests conducted with the weld line perpendicular to the tensile axis. Shear failure in the weld metal is observed in the experiments. Finite element simulations under generalized plane strain conditions are then conducted in order to further understand the effects of weld geometry and strength on the shear failure and formability of these welded blanks. The strain histories of the material elements in the weld metal obtained from finite element computations are finally used in a theoretical failure analysis based on the material imperfection approach to predict the failure strains for the laser-welded blanks under biaxial straining conditions.
Technical Paper

Factors Influencing Spark Behavior in a Spray-Guided Direct-Injected Engine

2006-10-16
2006-01-3376
The spark process has previously been shown to heavily influence ignition stability, particularly in direct-injected gasoline engines. Despite this influence, few studies have addressed spark behavior in direct-injected engines. This study examines the role of environmental factors on the behavior of the spark. Through measurement of the spark duration, by way of the ignition current trace, several observations are made on the influence of external factors on the behavior of the spark. Changing the level of nitrogen in the cylinder (to simulate EGR), the level of wetting and velocity imparted by the spray, the ignition dwell time and the orientation of the ground strap, observations are made as to which conditions are likely to produce unfavorable (shorter) spark durations. Through collection of a statistically significant number of sample spark lengths under each condition, histograms have been assembled and compared under each case.
Technical Paper

Distance Perception in Camera-Based Rear Vision Systems

2002-03-04
2002-01-0012
The importance of eye-to-display distance for distance perception in rear vision may depend on the type of display. At least in terms of its influence on the effective magnification of images, eye-to-display distance is almost irrelevant for flat rearview mirrors, but it is important for convex rearview mirrors and for other displays, such as video displays, that create images closer to the driver than the actual objects of interest. In the experiment we report here, we investigate the influence of eye-to-display distance on distance perception with both flat rearview mirrors and camera-based video displays. The results indicate that a simple model of distance perception based on the visual angles of images is not very successful. Visual angles may be important, but it appears that relationships between images of distant objects and the frames of the displays are also important. Further work is needed to fully understand how drivers might judge distance in camera-based displays.
Technical Paper

Distance Cues and Fields of View in Rear Vision Systems

2006-04-03
2006-01-0947
The effects of image size on perceived distance have been of concern for convex rearview mirrors as well as camera-based rear vision systems. We suggest that the importance of image size is limited to cases-such as current rearview mirrors-in which the field of view is small. With larger, richer fields of view it is likely that other distance cues will dominate image size, thereby substantially diminishing the concern that distortions of size will result in distortions of distance perception. We report results from an experiment performed in a driving simulator, with static simulated rearward images, in which subjects were asked to make judgments about the distance to a rearward vehicle. The images showed a field of view substantially wider than provided by any of the individual rearview mirrors in current systems. The field of view was 38 degrees wide and was presented on displays that were either 16.7 or 8.5 degrees wide, thus minifying images by factors of 0.44 or 0.22.
X