Refine Your Search

Topic

Author

Search Results

Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

1998-02-23
980916
One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
Technical Paper

A General Failure Criterion for Spot Welds with Consideration of Plastic Anisotropy and Separation Speed

2003-03-03
2003-01-0611
A general failure criterion for spot welds is proposed with consideration of the plastic anisotropy and the separation speed for crash applications. A lower bound limit load analysis is conducted to account for the failure loads of spot welds under combinations of three forces and three moments. Based on the limit load solution and the experimental results, an engineering failure criterion is proposed with correction factors determined by different spot weld tests. The engineering failure criterion can be used to characterize the failure loads of spot welds with consideration of the effects of the plastic anisotropy, separation speed, sheet thickness, nugget radius and combinations of loads. Spot weld failure loads under uniaxial and biaxial opening loads and those under combined shear and twisting loads from experiments are shown to be characterized well by the engineering failure criterion.
Technical Paper

A Generic Methodology for Chamber Flame Geometry Modeling

2000-10-16
2000-01-2797
Combustion flame geometry calculation is a critical task in the design and analysis of combustion engine chamber. Combustion flame directly influences the fuel economy, engine performance and efficiency. Currently, many of the flame geometry calculation methods assume certain specific chamber and piston top shapes and make some approximations to them. Even further, most methods can not handle multiple spark plug set-ups. Consequently, most of the current flame geometry calculation methods do not give accurate results and have some built-in limitations. They are particularly poor for adapting to any kind of new chamber geometry and spark plug set-up design. This report presents a novel methodology which allows the accurate calculation of flame geometry regardless of the chamber geometry and the number of spark plugs. In this methodology, solid models are used to represent the components within the chamber and unique attributes (colors) are attached respectively to these components.
Technical Paper

A Multi-Variable High-Speed Imaging Study of Ignition Instabilities in a Spray-Guided Direct-Injected Spark-Ignition Engine

2006-04-03
2006-01-1264
Ignition stability was studied in an optical spray guided spark ignition direct injection engine. The impact of intake air dilution with nitrogen, spark plug orientation, ignition system dwell time, and fuel injector targeting was addressed. Crank angle resolved fuel distributions were measured with a high-speed planar laser-induced fluorescence technique for hundreds of consecutive cycles. IMEP, COV of IMEP, burn rates and spark energy delivered to the gas were examined and used in conjunction with the imaging data to identify potential reasons for misfires.
Technical Paper

A Research Design to Collect Data for a Second Generation Eyellipse

1975-02-01
750362
Current automotive design practices related to driver visibility are based on static laboratory studies of mostly straight ahead viewing that were conducted by Meldrum and others beginning in 1962. These individual studies have never been replicated either in the lab or in actual driving situations to determine the validity of their procedures. After a thorough review of the literature related to driver eye location and a statistical analysis of previous static eye location data, an experimental design is proposed to determine dynamic eye location distribution characteristics. This design will provide information on: (a) the relationship of static anthropometric measurements to dynamic eye location; (b) the difference between dynamic on-the-road eye location versus static in-the-lab eye location distributions: (c) the effect of different types of vehicle seating package parameters on eye location; and, (d) a validation of previous static eye location studies.
Technical Paper

A Survey of Alcohol as a Motor Fuel

1964-01-01
640648
Alcohol has been promoted and used as a motor fuel for more than 50 years. However, United States ethyl alcohol production is small compared with gasoline production. High latent heat of vaporization of alcohol makes possible some increase of power over gasoline. The heating value of alcohol is low and energy content of alcohol blends is less than that of gasoline; fuel consumption of blends is therefore increased. The ability of ethanol to improve the octane number of gasoline has diminished as the octane number of gasoline has improved. There is no published evidence that alcohols can appreciably reduce air pollution problems.
Technical Paper

A Survey of Automotive Occupant Restraint Systems: Where We’ve Been, Where We Are and Our Current Problems

1969-02-01
690243
In recent years, automotive occupant restraint system development has gained impetus, stimulated, in part, by new federal standards. But in the resolution of the basic question of whether automobiles should be equipped with restraints, many new problems have arisen, including, ironically, some brought on by regulation. While there is little doubt that restraint systems can provide the single most important contribution to occupant protection, such restraint systems remain useless unless adequately installed and properly worn. Current problems involve not only what concepts provide most promise for future restraint systems, but diverse and often conflicting industry and governmental opinion about what are the best interests of the motoring public. Restraints are still not provided in buses, trucks, and utility vehicles. In addition, the problems of child and infant restraints and restraints for retrofit in older vehicles remain unresolved.
Technical Paper

A Universal Heat Transfer Correlation for Intake and Exhaust Flows in an Spark-Ignition Internal Combustion Engine

2002-03-04
2002-01-0372
In this paper, the available correlations proposed in the literature for the gas-side heat transfer in the intake and exhaust system of a spark-ignition internal combustion engine were surveyed. It was noticed that these only by empirically fitted constants. This similarity provided the impetus for the authors to explore if a universal correlation could be developed. Based on a scaling approach using microscales of turbulence, the authors have fixed the exponential factor on the Reynolds number and thus reduced the number of adjustable coefficients to just one; the latter can be determined from a least squares curve-fit of available experimental data. Using intake and exhaust side data, it was shown that the universal correlation The correlation coefficient of this proposed heat transfer model with all available experimental data is 0.845 for the intake side and 0.800 for the exhaust side.
Technical Paper

Algorithmic Maintenance of a Diesel Engine Electronic Fuel Feed Controller by Criterion of the Content of Soot in Exhaust Gas

2007-04-16
2007-01-0973
The feature of offered algorithm is that it allows, without record and analysis of the display diagram, to estimate a running cycle of a diesel engine parameters which characterize ecological and economic performances. The mathematical model described in report allows to determine connection of coefficient of filling, pressure and temperature of air boost, factor of excess of air with effectiveness ratio of combustion and contents of soot in exhaust gas and to take into account this connection at a choice initial data for control fuel feed or for elaboration of diesel engine dynamic model. The algorithm incorporated, for example, in the microcontroller of an electronic fuel feed controller allows analyzing the sensors data and theoretically determine of smoke amount in the exhaust gases for chosen cycle of fuel feed. The restriction of smoke is possible by criterion dD/dGT, where D - contents of soot in exhaust gas and GT - fuel cycle submission under the program-adaptive schema.
Technical Paper

An External Explosive Airbag Model for an Innovative Inflatable Bumper (I-bumper) Concept

2008-04-14
2008-01-0508
In the I-bumper (inflatable bumper) concept [1], two explosive airbags are released just before the main body-to-body crash in order to absorb the kinetic energy of colliding vehicles. The release also actuates other components in the I-bumper, including a movable bumper and an energy absorption morphing lattice structure. A small explosive charge will be used to deploy the airbag. A conventional airbag model will be used to reduce the crash energy in a controlled manner and reduce the peak impact force. An analytic model of the explosive airbag is developed in this paper for the I-bumper system and for its optimal design, while the complete system design (I-bumper) will be discussed in a separate paper. Analytical formulations for an explosive airbag will be developed and major design variables will be identified. These are used to determine the required amount of explosive and predict airbag behavior, as well to predict their impact on the I-bumper system.
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

2008-04-14
2008-01-0512
The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

An Investigation of Catalytic Converter Performances during Cold Starts

1999-10-25
1999-01-3473
Automotive exhaust emission regulations are becoming progressively stricter due to increasing awareness of the hazardous effects of exhaust emissions. The main challenge to meet the regulations is to reduce the emissions during cold starts, because catalytic converters are ineffective until they reach a light-off temperature. It has been found that 50% to 80% of the regulated hydrocarbon and carbon monoxide emissions are emitted from the automotive tailpipe during the cold starts. Therefore, understanding the catalytic converter characteristics during the cold starts is important for the improvement of the cold start performances This paper describes a mathematical model that simulates transient performances of catalytic converters. The model considers the effect of heat transfer and catalyst chemical reactions as exhaust gases flow through the catalyst. The heat transfer model includes the heat loss by conduction and convection.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
Technical Paper

Basic Physiology of Carbon Monoxide

1971-02-01
710300
The physiology of carbon monoxide is discussed in the human respiratory system. The details of the relationship of carbon monoxide and hemoglobin are outlined, and the effects of specific concentrations of CO are shown. Acute and chronic exposures to CO create certain effects on the various bodily systems, and these are described in detail.
Technical Paper

Benefits of Applying Adaptive Headlighting to the Current U.S. and European Low-Beam Patterns

2002-03-04
2002-01-0524
This analytical study examined the potential benefits of applying two embodiments of adaptive lighting to the U.S. and European low-beam patterns: curve lighting that involves shifting the beam horizontally into the curve, and motorway lighting that involves shifting the beam vertically upward. The curve lighting simulations paired 240-m radius left and right curves with a horizontal shift of 10°, and 80-m radius curves with a horizontal beam shift of 15°. The motorway lighting simulations involved upward aim shifts of 0.25° and 0.5°. For both curve and motorway lighting, changes in both seeing and glare illuminance were considered. Market-weighted model year 2000 U.S. and European beam patterns were used. We conclude that curve lighting, as simulated here, would substantially improve seeing performance on curves for both types of beams. On right curves (but not on left curves) there would be an increase in disability glare for oncoming traffic.
Technical Paper

Bioengineering of Impact Survival in Business Aircraft

1969-02-01
690335
Aircraft used for business (executive corporate transportation or personal business) and utility purposes now represent about one-third of the total United States aircraft inventory. Data from accident investigation of business aircraft involved in survivable accidents indicate serious injuries and fatality to the occupants occur most frequently as a result of the unprotected head and neck or chest flailing in contact with aircraft controls, instrument panel, or structure. Improvement of current aircraft to provide increased occupant safety and survival during crash impacts is both necessary and feasible. Design considerations include folding seat back locks to prevent collapse, increased seat tie-down to structure, instrument panels and glare shields designed to absorb energy through structural design and padding, stronger seat structure, lateral protection, design and packaging of knobs and projections to minimize injury in contact, and installation of upper torso restraint.
Technical Paper

Cam-Phasing Optimization Using Artificial Neural Networks as Surrogate Models-Maximizing Torque Output

2005-10-24
2005-01-3757
Variable Valve Actuation (VVA) technology provides high potential in achieving high performance, low fuel consumption and pollutant reduction. However, more degrees of freedom impose a big challenge for engine characterization and calibration. In this study, a simulation based approach and optimization framework is proposed to optimize the setpoints of multiple independent control variables. Since solving an optimization problem typically requires hundreds of function evaluations, a direct use of the high-fidelity simulation tool leads to the unbearably long computational time. Hence, the Artificial Neural Networks (ANN) are trained with high-fidelity simulation results and used as surrogate models, representing engine's response to different control variable combinations with greatly reduced computational time. To demonstrate the proposed methodology, the cam-phasing strategy at Wide Open Throttle (WOT) is optimized for a dual-independent Variable Valve Timing (VVT) engine.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Characterization of Combustion and NO Formation in a Spray-Guided Gasoline Direct-Injection Engine using Chemiluminescence Imaging, NO-PLIF, and Fast NO Exhaust Gas Analysis

2005-05-11
2005-01-2089
The spatial and temporal formation of nitric oxide in an optical engine operated with iso-octane fuel under spray-guided direct-injection conditions was studied with a combination of laser-induced fluorescence imaging, UV-chemiluminescence, and cycle resolved NO exhaust gas analysis. NO formation during early and late (homogeneous vs. stratified) injection conditions were compared. Strong spatial preferences and cyclic variations in the NO formation were observed depending on engine operating conditions. While engine-out NO levels are substantially lower for stratified engine operation, cyclic variations of NO formation are substantially higher than for homogeneous, stoichiometric operation.
Technical Paper

Child Restraint and Airbag Interaction: Problem and Progress

1993-11-01
933094
The nature of the potentially hazardous interaction between a passenger-side airbag and a rear-facing child restraint is described, as well as the expectations regarding airbag interaction with other types of child restraint systems. Progress made in developing tools to study the problem and test criteria to evaluate possible solutions are summarized, efforts to inform the public are noted, and promising directions for dealing with the problem are addressed. Primary emphasis is placed on the work of the Society of Automotive Engineers (SAE) Child Restraint and Airbag Interaction (CRABI) Task Force and that of its members.
X