Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicular Radar Speedometer

1973-02-01
730125
Certain problems associated with conventional vehicular speed sensing, such as wheel slip, wheel lock, and variable rolling radius, can be alleviated by employing microwave speed sensing. It is expected that true speed sensing will augment a number of automotive and other ground transportation applications. An experimental, two-horn, 55 GHz continuous wave radar speedometer designed to measure true ground speed in the presence of vehicular perturbations is described; the system has an ultimate design frequency of 60 GHz. An Impatt diode, solid-state transmitter was incorporated in this design because of its inherent advantages. The RF portion of the transmitter-receiver unit, including the dipole feed, is housed on a single microstrip circuit on an alumina substrate 1/2 X 1/4 in (12.7 X 6.35 mm). Vertically polarized beams incident at angles of 35 deg with respect to the horizontal system were chosen as a design compromise.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

1995-02-01
950886
The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female and Large Male Dummies

1989-02-01
890756
This paper summarizes the rationale used to specify the geometric, inertial and impact response requirements for a small adult female dummy and a large adult male dummy with impact biofidelity and measurement capacity comparable to the Hybrid III dummy, the most advanced midsize adult male dummy. Body segment lengths and weights for these two dummies were based on the latest anthropometry studies for the extremes of the U.S.A. adult population. Other characteristic body segment dimensions were calculated from geometric and mass scaling relationships that assured that each body segment had the same mass density as the corresponding body segment of the Hybrid III dummy. The biomechanical impact response requirements for the head, neck, chest and knee of the Hybrid III dummy were scaled to give corresponding biomechanical impact response requirements for each dummy.
Technical Paper

Running Loss Test Procedure Development

1992-02-01
920322
A running loss test procedure has been developed which integrates a point-source collection method to measure fuel evaporative running loss from vehicles during their operation on the chassis dynamometer. The point-source method is part of a complete running loss test procedure which employs the combination of site-specific collection devices on the vehicle, and a sampling pump with sampling lines. Fugitive fuel vapor is drawn into these collectors which have been matched to characteristics of the vehicle and the test cell. The composite vapor sample is routed to a collection bag through an adaptation of the ordinary constant volume dilution system typically used for vehicle exhaust gas sampling. Analysis of the contents of such bags provides an accurate measure of the mass and species of running loss collected during each of three LA-4* driving cycles. Other running loss sampling methods were considered by the Auto-Oil Air Quality Improvement Research Program (AQIRP or Program).
Technical Paper

Rollover and Drop Tests - The Influence of Roof Strength on Injury Mechanics Using Belted Dummies

1990-10-01
902314
This report presents the test methods and results of a study involving lap/shoulder belted dummies in dynamic dolly rollover tests and inverted vehicle drop tests. Data are presented showing dummy neck loadings resulting from head impacts to the vehicle interior as the vehicle contacts the ground. Comparison of the number and magnitude of axial neckloads are presented for rollcaged and production vehicles, as well as an analysis of the factors which influence neckloads under these conditions.
Technical Paper

Results of the Motor Vehicle Manufacturers Association Component and Full-Vehicle Side Impact Test Procedure Evaluation Program

1985-01-01
856087
This paper presents an extensive research program undertaken to develop improved side impact test methods. The development of a component side impact test device along with an associated test procedure are reviewed. The results of accident data analysis techniques to define anatomical areas most likely to be injured during side impact and definition of test device response corridors based on human surrogate testing conducted by the Association Peugeot/Renault and the University of Heidelberg are discussed. The relationship of response corridors and accident data analysis in earlier phases of the project resulted in definition and development of a component side impact test device to represent the human thorax. A test program to evaluate and compare component and full-vehicle test results is presented.
Technical Paper

Responses of Animals Exposed to Deployment of Various Passenger Inflatable Restraint System Concepts for a Variety of Collision Severities and Animal Positions

1982-01-01
826047
This paper summarizes the results of tests conducted with anesthetized animals that were exposed to a wide range of passenger inflatable restraint cushion forces for a variety of impact sled - simulated accident conditions. The test configurations and inflatable restraint system concepts were selected to produce a broad spectrum of injury types and severities to the major organs of the head, neck and torso of the animals. These data were needed to interpret the significance of the responses of an instrumented child dummy that was being used to evaluate child injury potential of the passenger inflatable restraint system being developed by General Motors Corporation. Injuries ranging from no injury to fatal were observed for the head, neck and abdomen regions. Thoracic injuries ranged from no injury to critical, survival uncertain.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

Reducing Catalytic Converter Pressure Loss with Enhanced Inlet-Header Diffusion

1995-10-01
952398
The function of the inlet header of a catalytic converter is to diffuse the inlet exhaust flow, decreasing its velocity and increasing its static pressure with as little loss in total pressure as possible. In practice, very little diffusion takes place in most catalytic converter inlet headers because the flow separates at the interface of the pipe and the tapered section leading to the substrate. This leads to increased converter pressure loss and flow maldistribution. An improved inlet-header design called the Enhanced Diffusion Header (EDH) was developed which combines a short, shallow-angle diffuser with a more abrupt expansion to the substrate cross section. Tests conducted in room air (cold flow) and engine exhaust showed that improved inlet-jet diffusion leads to substantial reductions in converter restriction. EDH performance was not compromised by the presence of a right-angle bend upstream of the converter.
Technical Paper

Posture and Motion Prediction: Perspectives for Unconstrained Head Movements

2006-07-04
2006-01-2330
The relationship between motion and posture was investigated from the kinematics of unconstrained head movements. Head movements for visual gazing exhibited an initial component whose amplitude does not exceed 20.3° for target eccentricity up to 120°. This component was truncated by subsequent corrective movements whose occurrence generally increases with target eccentricity, although with a large variability (R2 ≤ 0.46). The head is finally stabilized at 72% of target eccentricity (R2 ≥ 0.92). These results indicate that the final head posture can be achieved through a number of loosely-programmed kinematic variations. Based on these results, unconstrained head movements were simulated, within the context of application to posture prediction for estimation of the visual field.
Technical Paper

Numerical Investigation of the Electrothermal De-Icing Process of a Rotor Blade

2015-06-15
2015-01-2102
The numerical simulation of ice melting process on an iced helicopter rotor blade is presented. The ice melting model uses an enthalpy-porosity formulation, and treats the liquid-solid mushy zone as a porous zone with porosity equal to the liquid fraction. The ice shape on the blade section is obtained by the icing code with a dynamic mesh module. Both of the temperature change and the ice-melting process on the rotor blade section surface are analyzed. The phenomenon of ice melting is analyzed through the change of temperature and liquid fraction on the abrasion/ice interface. The liquid fraction change as with time on the abrasion/ice surface is observed, which describes the ice-melting process well. The numerical results show that the ice melting process can be simulated effectively by the melting model. The de-icing process can be monitored by observing the change of the liquid fraction of the area around the abrasion/ice interface.
Technical Paper

Modifying Motions for Avoiding Obstacles

2001-06-26
2001-01-2112
Interference between physical objects in the workspace and the moving human body may cause serious problems, including errors in manual operation, physical damage and trauma from the collision, and increased biomechanical stresses due to movement reorganization for avoiding the obstacles. Therefore, a computer algorithm to detect possible collisions and simulate human motions to avoid obstacles will be an important tool for computer-aided ergonomics and optimization of system design in the early stage of a design process. In the present study, we present a method of modifying motions for obstacle avoidance when the object intrudes near the center of the planned motion. We take the motion modification approach, as we believe that for a certain class of obstacle avoidance problems, a person would modify a pre-planned motion that would result in a collision to a new one that is collision-free, as opposed to organizing a totally unique motion pattern.
Technical Paper

Modeling of Effort Perception in Lifting and Reaching Tasks

2001-06-26
2001-01-2120
Although biomechanics models can predict the stress on the musculoskeletal system, they cannot predict how the muscle load associated with exertion is perceived. The short-term goal of the present study was to model the perception of effort in lifting and reaching tasks. The long-term goal is to determine the correlation between objective and subjective measures of effort and use this information to predict fatigue or the risk of injury. Lifting and reaching tasks were performed in seated and standing situations. A cylindrical object and a box were moved with one hand and two hands, respectively, from a home location to shelves distributed in the space around the subject. The shoulder and torso effort required to perform these tasks were rated on a ten point visual analog scale.
Technical Paper

Investigation of Dummy Response and Restraint Configuration Factors Associated with Upper Spinal Cord Injury in a Forward-Facing Child Restraint

1993-11-01
933101
Dummy response and restraint configuration factors associated with a known child injury environment were investigated using a spinal-cord injury accident case, a full-scale reconstruction, and sled simulations. The work is one of several studies undertaken in association with the International Task Force on Child Restraining Systems to support the development of improved neck injury criteria and restraint systems for young children. A two-vehicle crash involving a restrained child occupant was investigated in detail and reconstructed in full-scale at the Transport Canada Motor Vehicle Test Centre using the CRABI 6-Month dummy. Vehicle damage and crush characteristics closely resembled that of the case vehicles. Dummy instrumentation included head and chest accelerometers and upper and lower neck transducers. The case occupant had been facing forward and had sustained a contusion of the spinal cord at T2 that resulted in paraplegia.
Technical Paper

Investigation of Airbag-Induced Skin Abrasions

1992-11-01
922510
Static deployments of driver-side airbags into the legs of human subjects were used to investigate the effects of inflator capacity, internal airbag tethering, airbag fabric, and the distance from the module on airbag-induced skin abrasion. Abrasion mechanisms were described by measurements of airbag fabric velocity and target surface pressure. Airbag fabric kinematics resulting in three distinct abrasion patterns were identified. For all cases, abrasions were found to be caused primarily by high-velocity fabric impactrather than scraping associated with lateral fabric motion. Use of higher-capacity inflators increased abrasion severity, and untethered airbags produced more severe abrasions than tethered airbags at distances greater than the length of the tether. Abrasion severity decreased as the distance increased from 225 to 450 mm. Use of a finer-weave airbag fabric in place of a coarser-weave fabric did not decrease the severity of abrasion.
Technical Paper

Interpretations of the Impact Responses of a 3-Year-Old Child Dummy Relative to Child Injury Potential

1982-01-01
826048
An analysis is presented that was used to interpret the significance of response measurements made with a specially instrumented, 3-year-old child dummy that was used to evaluate child injury potential of the second-generation, passenger inflatable restraint system that was being developed by General Motors Corporation. Anesthetized animals and a specially instrumented child dummy, both 3-year-old child surrogates, were exposed to similar inflating-cushion, simulated collision environments. The exposure environments were chosen to produce a wide spectrum of animal injury types and severities, and a corresponding broad range of child dummy responses. For a given exposure environment, the animal injury severity ratings for the head, neck, thorax and abdomen are paired with dummy response values corresponding to these body regions.
Technical Paper

Human Factors Evaluation of Headlight Switching Systems

1974-02-01
740998
A search for methods of switching a proposed three beam headlight system led to the evaluation of 41 possible schemes. Human factors criteria reduced the original 41 to three systems which were tested in a laboratory with a broad range of subjects. Recordings of practice trials, learning trials, and the responses to visual cues projected on a screen were analyzed. The same test procedure was also used to compare three alternative ways of switching conventional two beam headlight systems. Summary data is presented for the six systems tested grouped by test subject age, sex, and driving experience. The most pronounced difference observed was in the subjective preference rating among two beam switching systems. All systems tested resulted in remarkably few learning and practice trials. Small differences were recorded among systems in operational response time.
Technical Paper

General Motors Passenger Tire Performance Criteria

1976-02-01
762008
The purpose of this paper is to provide an overview of the process of selection, development and approval of General Motors original equipment TPC passenger car tires. We have attempted to minimize detail in each specific area, but intend to provide a general comprehension of the thought processes involved and the procedures used to select the proper tire size and type for a vehicle. We will then describe the tire performance criteria involved in the overall development and approval process and will subsequently consider tire noise requirements in somewhat greater detail. The paper will conclude by describing the General Motors Tire Performance Criteria (TPC) System, which is a documentation of the General Motors Tire Performance requirements and test procedures.
Technical Paper

Front Suspension Multi-Axis Testing

1987-11-01
872255
A front suspension laboratory test procedure was developed to reproduce time-correlated fatigue damaging events from a light truck road durability test. Subsequently, the performance of front suspension systems for the GMT 400 light truck program were evaluated in terms of customer reliability. Both prototype and pilot testing, as well as computer modeling, were used in the evaluation.
X