Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Experimental Comparison between Stratified Flame Ignition and Micro Flame Ignition in a Gasoline SI-CAI Hybrid Combustion Engine

2017-03-28
2017-01-0737
Controlled Auto-Ignition (CAI), also known as Homogeneous charge compression ignition (HCCI), has been the subject of extensive research because of their ability to providing simultaneous reduction in fuel consumption and NOx emissions in a gasoline engine. However, due to its limited operation range, combustion mode switching between CAI and spark ignition (SI) combustion is essential to cover the overall operational range of a gasoline engine for passenger car applications. Previous research has shown that the SI-CAI hybrid combustion has the potential to control the ignition timing and heat release process during both steady state and transient operations. However, it was found that the SI-CAI hybrid combustion process is often characterized with large cycle-to-cycle variations, due to the flame instability at high dilution conditions.
Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

A Rule-Based Energy Management Strategy for a Light-Duty Commercial P2 Hybrid Electric Vehicle Optimized by Dynamic Programming

2021-04-06
2021-01-0722
An appropriate energy management strategy can further reduce the fuel consumption of P2 hybrid electric vehicles (HEV) with simple hybrid configuration and low cost. The rule-based real-time energy management strategy dominates the energy management strategies utilized in commercial HEVs, due to its robustness and low computational loads. However, its performance is sensitive to the setting of parameters and control actions. To further improve the fuel economy of a P2 HEV, the energy management strategy of the HEV has been re-designed based on the globally optimal control theory. An optimization strategy model based on the longitudinal dynamics of the vehicle and Bellman’s dynamic programming algorithm was established in this research and an optimal power split in the dual power sources including an internal combustion engine (ICE) and an electric machine at a given driving cycle was used as a benchmark for the development of the rule-based energy management strategy.
X