Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Fuel Saving Potential of Different Turbo-Compounding Systems Under Steady and Driving Cycles

2015-04-14
2015-01-0878
The performance of three different electric turbo-compounding systems under both steady and driving cycle condition is investigated in this paper. Three configurations studied in this paper are serial turbo-compounding, parallel turbo-compounding and electric assisted turbo-compounding. The electric power, global gain of the whole system (engine and power turbine) under steady operating condition is firstly studied. Then investigation under three different driving cycles is conducted. Items including fuel consumption, engine operating point distribution and transient response performance are analyzed among which the second item is done based on statistic method combined with the results obtained under steady operating conditions. Study under steady condition indicates that electric assisted turbo-compounding system is the best choice compared with the other two systems. The performance of serial turbo-compounding is load oriented while parallel configuration is speed oriented.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

An Assessment of the Impact of Exhaust Turbine Redesign, for Narrow VGT Operating Range, on the Performance of Diesel Engines with Assisted Turbocharger

2019-04-02
2019-01-0326
Electrically assisted turbochargers are a promising technology for improving boost response of turbocharged engines. These systems include a turbocharger shaft mounted electric motor/generator. In the assist mode, electrical energy is applied to the turbocharger shaft via the motor function, while in the regenerative mode energy can be extracted from the shaft via the generator function, hence these systems are also referred to as regenerative electrically assisted turbochargers (REAT). REAT allows simultaneous improvement of boost response and fuel economy of boosted engines. This is achieved by optimally scheduling the electrical assist and regeneration actions. REAT also allows the exhaust turbine to operate within a narrow range of optimal vane positions relative to the unassisted variable geometry turbocharger (VGT). The ability to operate within a narrow range of VGT vane positions allows an opportunity for a more optimal turbine design for a REAT system.
Technical Paper

A Rule-Based Energy Management Strategy for a Light-Duty Commercial P2 Hybrid Electric Vehicle Optimized by Dynamic Programming

2021-04-06
2021-01-0722
An appropriate energy management strategy can further reduce the fuel consumption of P2 hybrid electric vehicles (HEV) with simple hybrid configuration and low cost. The rule-based real-time energy management strategy dominates the energy management strategies utilized in commercial HEVs, due to its robustness and low computational loads. However, its performance is sensitive to the setting of parameters and control actions. To further improve the fuel economy of a P2 HEV, the energy management strategy of the HEV has been re-designed based on the globally optimal control theory. An optimization strategy model based on the longitudinal dynamics of the vehicle and Bellman’s dynamic programming algorithm was established in this research and an optimal power split in the dual power sources including an internal combustion engine (ICE) and an electric machine at a given driving cycle was used as a benchmark for the development of the rule-based energy management strategy.
X