Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Fuel Consumption and NOx Emission Prediction of Heavy-Duty Diesel Vehicles under Different Test Cycles and Their Sensitivities to Driving Factors

2020-09-15
2020-01-2002
Due to the rapid development of road infrastructure and vehicle population in China, the fuel consumption and emission of on-road vehicles tested in China World Transient Vehicle Cycle (C-WTVC) cannot indicate the real driving results. But the test results in China Heavy-duty Commercial Vehicle Test Cycle-Coach (CHTC-C) based on the road driving conditions in China are closer to the actual driving data. In this paper, the model for predicting the performance of heavy-duty vehicles is established and validated. The fuel consumption and NOx emission of a Euro VI heavy-duty coach under C-WTVC and CHTC-C tests are calculated by employing the developed model. Furthermore, the fuel consumption of the test coach is optimized and its sensitivity to the driving factors is analyzed.
Technical Paper

Feasibility Study of Using WLTC for Fuel Consumption Certification of Chinese Light-Duty Vehicles

2018-04-03
2018-01-0654
This paper presents the feasibility study of using the worldwide harmonized light vehicles test cycle (WLTC) for the fuel consumption certification of Chinese Light-duty (LD) vehicles. First, the key steps and the technical routes of the development process of WLTC are summarized. Second, the operation data of 3082 vehicles in 41 typical cities of China are collected throughout the year. Then, the characteristics of the acquisition data are compared with WLTC. Finally, the feasibility of using WLTC for fuel consumption certification of Chinese LD vehicles is analyzed in three aspects, includes operation characteristics, weighting factors and fuel consumption. The result shows that there is obvious difference between WLTC and Chinese reality, and WLTC is not suitable for the fuel consumption certification of Chinese LD vehicles.
Technical Paper

Effects of Motor and Transmission on Noise Level of Electric Bus Powertrain Using Lead Packaging Method

2018-04-03
2018-01-1281
Because of the advantages of excellent power, fuel economy and zero-emission characteristics, electric buses have been used widely as cities’ short-range commuter vehicles. However, the high-frequency noise becomes more prominent for the powertrain system of the electric bus due to the lack of noise masking effect for the traditional internal combustion engine. To improve the noise characteristic of electric bus powertrain, the identification of the main noise source of the powertrain is well needed. In this paper, the effects of the motor and transmission on the noise level of the electric bus powertrain have been studied using lead packaging method. The variations of acoustical power level of the powertrain according to different rotation speed and torque under the conditions of only motor covered and only transmission covered have been discussed.
Technical Paper

Effects of Lubricating Oil Metallic Content on Morphology, Nanostructure and Graphitization Degree of Diesel Engine Exhaust Particles

2017-03-28
2017-01-1009
In this paper, the influences of metallic content of lubricating oils on diesel particles were investigated. Three lubricating oils with different levels of metallic content were used in a 2.22 Liter, two cylinders, four stroke, and direct injection diesel engine. 4.0 wt. % and 8 wt. % antioxidant and corrosion inhibitor (T202) were added into baseline lubricating oil to improve the performance respectively. Primary particle diameter distributions and particle nanostructure were compared and analyzed by Transmission Electron Microscope. The graphitization degrees of diesel particles from different lubricating oils were analyzed by Raman spectroscopy. Conclusions drawn from the experiments indicate that the metallic content increases the primary particles diameter at 1600 rpm and 2200 rpm. The primary particles diameter ranges from 5 nm to 65 nm and the distribution conformed to Gaussian distribution.
Technical Paper

Effect of Lubricating Oil Volatile Fractions on Diesel Particle Emissions

2018-04-03
2018-01-0637
In this study, the effect of volatile fractions from engine lubricating oil on diesel particle emissions were studied experimentally. One commercial CF lubricating oil was used and distilled to subtract the different volatile fractions with boiling temperature of 220 °C, 260 °C and 300 °C, respectively. Oils derived from this distillation process were applied as the lubricating oil and following engine experiments were conducted. Diesel primary particles were sampled with a costume designed thermophoretic system. A fast response particulate spectrum equipment was employed to study the size distribution and number concentration of particles in the exhaust. Transmission electron microscopy was used to characterize the size distribution of the primary diesel particles relates to different oil volatile fractions.
Technical Paper

Effect of Ashless Dispersant on the Morphology, Size, Nanostructure and Graphitization Degree of Diesel Exhaust Particles

2018-04-03
2018-01-0636
The aim of this research is to investigate the effects of ashless dispersant of lube oils on diesel exhaust particles. Emphasis is placed on particle size, morphology, nanostructure and graphitization degree. Three kinds of lube oils with different percentages of ashless dispersant were used in a two-cylinder diesel engine. Ashless dispersant (T154), which is widely used in petrochemical industry, were added into baseline oil at different blend percentages (4.0% and 8.0% by weight) to improve lubrication and cleaning performance. A high resolution Transmission Electron Microscope (HRTEM) and a Raman spectroscopy were employed to analyze and compare particle characteristics. According to the experiment results, primary particles diameter ranges from 3 nm to 65 nm, and the diameter distribution conformed to Gaussian distribution. When the ashless dispersant was used, the primary particles diameter decrease obviously at both 1600 rpm and 2200 rpm.
X