Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Similarity Analysis of the Chemical Kinetic Mechanism on the Ignition Delay in Shock Tubes and Homogeneous Charge Compression Ignition (HCCI) Engines

2017-10-08
2017-01-2260
The chemical kinetic mechanism determines the ignition timing of homogeneous charge compression ignition (HCCI) engines. The correlation of the ignition delay in shock tubes and HCCI engines under different operating conditions was studied with a reduced mechanism of the primary reference fuel (PRF) composing of n-heptane and iso-octane. According to the similarity analysis of the sensitivity coefficient, the operating conditions which affect the similarity factor are recognized. The results indicate that, under the negative temperature coefficient (NTC) region of the ignition delay in shock tubes, the weight of each reaction on the ignition delay in shock tubes is similar to that in HCCI engines. The ignition delay time in HCCI engines is defined as the period from the time of start of heat release (SHR) with the HRR greater than zero to CA10. At the high equivalence ratios in shock tubes, the similarity factor at the low ambient temperatures is small.
Technical Paper

Numerical Optimization of the Piston Bowl Geometry and Investigation of the Key Geometric Parameters for the Dual-Mode Dual-Fuel (DMDF) Concept under a Wide Load Range

2022-03-29
2022-01-0782
Focusing on the dual-mode dual-fuel (DMDF) combustion concept, a combined optimization of the piston bowl geometry with the fuel injection strategy was conducted at low, mid, and high loads. By coupling the KIVA-3V code with the enhanced genetic algorithm (GA), a total of 14 parameters including the piston bowl geometric parameters and the injection parameters were optimized with the objective of meeting Euro VI regulations while improving the fuel efficiency. The optimal piston bowl shape coupled with the corresponding injection strategy was summarized and integrated at various loads. Furthermore, the effects of the key geometric parameters were investigated in terms of organizing the in-cylinder flow, influencing the energy distribution, and affecting the emissions. The results indicate that the behavior of the DMDF combustion mode is further enhanced in the aspects of improving the fuel economy and controlling the emissions after the bowl geometry optimization.
Technical Paper

Numerical Investigation of the Potential of Late Intake Valve Closing (LIVC) Coupled with Double Diesel Direct-Injection Strategy for Meeting High Fuel Efficiency with Ultra-Low Emissions in a Heavy-Duty Reactivity Controlled Compression Ignition (RCCI) Engine at High Load

2019-04-02
2019-01-1166
The potential of diesel/gasoline RCCI combustion coupled with late intake valve closing (LIVC) and double direct injection of diesel for meeting high fuel efficiency with ultra-low emissions was investigated in this study. The study was aiming at high load operation in a heavy-duty diesel engine. Based on the reactivity stratification of RCCI combustion, the employment of double injection of diesel fuel provided concentration stratification of the high-reactivity fuel, which is to further realize effective control of the combustion process. Meanwhile, late intake valve closing (LIVC) strategy is introduced to control the maximum in-cylinder pressure and nitrogen oxides (NOx) emissions.
Technical Paper

Mixing Effects of Early Injection in Diesel Spray Using LES Model with Different Subgrid Scale Models

2013-04-08
2013-01-1111
Early injection timing is an effective measure of pre-mixture formation for diesel low-temperature combustion. Three algebraic subgrid models (Smagorinsky model, dynamic Smagorinsky model and WALE model) and one-equation kinetic energy turbulent model using modified TAB breakup model (MTAB model) have been implemented into KIVA3V code to make a detailed large eddy simulation of the atomization and evaporation processes of early injection timing in a constant volume chamber and a Ford high-speed direct-injection diesel engine. The results show that the predictive vapor mass fraction and liquid penetration using LES is in good agreement with the experiment results. In combustion chamber, the sub-grid turbulent kinetic energy and viscosity using LES are less than with the RANS models, and following the increasing time, the sub-grid turbulent kinetic energy and viscosity also increase and are concentrated on the spray area.
Journal Article

Evaluation of Spray/Wall Interaction Models under the Conditions Related to Diesel HCCI Engines

2008-06-23
2008-01-1632
Diesel homogeneous charge compression ignition (HCCI) engines with early injection can result in significant spray/wall impingement which seriously affects the fuel efficiency and emissions. In this paper, the spray/wall interaction models which are available in the literatures are reviewed, and the characteristics of modeling including spray impingement regime, splash threshold, mass fraction, size and velocity of the second droplets are summarized. Then three well developed spray/wall interaction models, O'Rourke and Amsden (OA) model, Bai and Gosman (BG) model and Han, Xu and Trigui (HXT) model, are implemented into KIVA-3V code, and validated by the experimental data from recent literatures under the conditions related to diesel HCCI engines. By comparing the spray pattern, droplet mass, size and velocity after the impingement, the thickness of the wall film and vapor distribution with the experimental data, the performance of these three models are evaluated.
Technical Paper

Development of a Reduced Chemical Mechanism for Dimethyl Ether (DME) Using a Decoupling Methodology

2017-10-08
2017-01-2191
Dimethyl ether (DME) attracts increasing attentions in recent years, because it can reduce the carbon monoxide (CO), unburned hydrocarbon (HC), and soot emissions for engines as the transportation fuel or the fuel additive. In this paper, a reduced DME oxidation mechanism is developed using the decoupling methodology. The rate constants of the fuel-related reactions are optimized using the non-dominated sorting genetic algorithm II (NSGA-II) to reproduce the ignition delay times in shock tubes and major species concentrations in jet-stirred reactors (JSR) over low-to-high temperatures. In NSGA-II, the range of the rate constants was considered to ensure the reliability of the optimized mechanism. Moreover, an improved objective function was proposed to maintain the faithfulness of the optimized mechanism to the original reaction mechanism, and a new method was presented to determine the optimal solution from the Pareto front.
Technical Paper

Computational Optimization of Syngas/Diesel RCCI Combustion at Low Load in Different Engine Size

2019-04-02
2019-01-0573
Syngas is considered to be a promising alternative fuel for the dual-fuel reactivity controlled compression ignition (RCCI) engine to reduce the fuel consumption and emissions. However, the optimal syngas compositions and fuel supply strategies in RCCI combustion are significantly affected by engine configurations, which have not been investigated yet. In this study, by integrating the KIVA-3V code and the non-dominated sort genetic algorithm II (NSGA-II), the optimizations for a 0.477 L single-cylinder engine with shallow/wide piston bowl (Engine A) and a 1.325 L single-cylinder engine with conventional omega-type piston (Engine B) under the syngas/diesel RCCI combustion were performed. The optimized operating parameters include the fuel-supply strategies, syngas compositions, and intake conditions. The results indicate that the fuel-supply strategy is flexible in Engine A due to the shallow/wide piston bowl and the relatively small cylinder bore.
Technical Paper

Comparing the Exergy Destruction of Methanol and Gasoline in Reactivity Controlled Compression Ignition (RCCI) Engine

2017-03-28
2017-01-0758
Multi-dimensional models coupled with a reduced chemical mechanism were used to investigate the effect of fuel on exergy destruction fraction and sources in a reactivity controlled compression ignition (RCCI) engine. The exergy destruction due to chemical reaction (Deschem) makes the largest contribution to the total exergy destruction. Different from the obvious low temperature heat release (LTHR) behavior in gasoline/diesel RCCI, methanol has a negative effect on the LTHR of diesel, so the exergy destruction accumulation from LTHR to high temperature heat release (HTHR) can be avoided in methanol/diesel RCCI, contributing to the reduction of Deschem. Moreover, the combustion temperature in methanol/diesel RCCI is higher compared to gasoline/diesel RCCI, which is also beneficial to the lower exergy destruction fraction. Therefore, the exergy destruction of methanol/diesel RCCI is lower than that of gasoline/diesel RCCI at the same combustion phasing.
Technical Paper

A Numerical Investigation of the Vaporization Process of Lubricating Oil Droplets under Gas Engine Conditions

2015-09-01
2015-01-1949
The abnormal combustion resulted by the auto-ignition of lubricating oil is a great challenge to the development of Otto-cycle gas engines. In order to investigate the mechanism of lubricating oil droplet vaporization process, a crucial sub-process of auto-ignition process, a new multi-component vaporization model was constructed for high temperature and pressure, and forced gas flow conditions as encountered in practical gas engines. The vaporization model has been conducted with a multi-diffusion sub-model considering the multi-component diffusivity coefficients in the gas phase. The radiation heat flux caused by ambient gas was taken into account in high temperature conditions, and a real gas equation of state was used for high pressure conditions. A correction for mass vaporization rate was used for forced gas flow conditions. Extensive verifications have been realized, and considerable results have been achieved.
X