Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Updated Prediction of the Physical Properties Needed for Modeling the Spray Behavior of Biodiesel Fuel

2014-10-13
2014-01-2750
It has been recognized that density, viscosity, surface tension, and volatility of liquid fuel are of great importance on the atomization and vaporization characteristics of biodiesel spray. This paper presents a comprehensive physical property prediction of biodiesel fuel for spray modeling with most recently developed property prediction models. The temperature-dependent properties of a soy methyl ester (SME) biodiesel were well predicted by the updated prediction methods. Then, the physical properties of the SME biodiesel were added into the KIVA-3V fuel library. By using the well predicted fuel properties, the spray behaviors of SME were successfully simulated by the KIVA-3V code under late-cycle post-injection, conventional diesel injection, and early-injection engine-relevant conditions. The simulation results agree reasonably well with the available experimental liquid penetrations under conditions of various ambient densities and temperatures.
Technical Paper

Understanding the Effects of Recycled Burnt Gases on the Controlled Autoignition (CAI) Combustion in Four-Stroke Gasoline Engines

2001-09-24
2001-01-3607
Controlled Auto-Ignition (CAI) combustion, also known as HCCI or PCCI, has recently emerged as a viable alternative combustion process to the conventional spark ignition (SI) or compression ignition (CI) process for internal combustion (IC) engines, owing to its potential for high efficiency and extremely low emissions. One of the most effective and practical means of achieving CAI combustion in an engine is to retain or recycle the burnt gases. In order to understand better the effects of recycled burnt gases on CAI combustion, detailed analytical and experimental studies have been carried out. The analytical studies were performed using an engine simulation model with detailed chemical kinetics. The five effects of the recycled burned gases studied include: (1.) Charge heating effect: higher intake charge temperature due to hot burned gases; (2.) Dilution effect: the reduction of oxygen due to the presence of the burned gases; (3.)
Technical Paper

Time-Resolved Measurements and Analysis of In-Cylinder Gases and Particulates in Compression-Ignition Engines

1996-05-01
961168
The extraction of small quantities of gas and particulates from diesel engine cylinders allows time-resolved gas and particulate analysis to be performed outside the engine during a short window of a few degrees crank angle at any stage of the engine cycle. The paper describes the design features and operation of a high-speed, intermittent sampling valve for extracting in-cylinder gases and particulates from diesel engines at any selected instant of the combustion process. Various sampling valve configurations are outlined. Detailed analysis of gas flow through the valve and the performance of the electromagnetic actuator and plunger are given in order to facilitate the design of the sampling valve. Finally, examples of the uses of the sampling valve in a direct-injection diesel engine are provided. These demonstrate how gaseous emissions such as NOx, uHC, CO2, and particulate emissions can be sampled at any part of the combustion process and analysed.
Journal Article

Three-Dimensional Simulation of Water Management for High-Performance Proton Exchange Membrane Fuel Cell

2018-04-03
2018-01-1309
Proton exchange membrane fuel cell (PEMFC) is widely regarded as the most promising candidate for the next generation power source of automobile, after the pure battery electric vehicle. In this study, the gas and liquid two-phase flow in channels and porous electrodes inside PEMFC coupled with electrochemical reaction is simulated in detail, in which the anisotropic gas diffusion layer (GDL) is also considered. In the simulation, the inlet reactant gas molar concentration is calculated based on the real inlet pressure, which is more practical than specifying a constant value in previous simulation. Meanwhile, the effect of electro-osmotic drag on membrane water content distribution is treated to be a convection term in the conservation equation, instead of a source term as usually used.
Technical Paper

Three-Dimensional Multi-Scale Simulation for Large-Scale Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0381
PEMFC (proton exchange membrane or polymer electrolyte membrane fuel cell) is a potential candidate as a future power source for automobile applications. Water and thermal management is important to PEMFC operation. Numerical models, which describe the transport and electrochemical phenomena occurring in PEMFCs, are important to the water and thermal management of fuel cells. 3D (three-dimensional) multi-scale CFD (computational fluid dynamics) models take into account the real geometry structure and thus are capable of predicting real operation/performance. In this study, a 3D multi-phase CFD model is employed to simulate a large-scale PEMFC (109.93 cm2) under various operating conditions. More specifically, the effects of operating pressure (1.0-4.0 atm) on fuel cell performance and internal water and thermal characteristics are studied in detail under two inlet humidities, 100% and 40%.
Journal Article

Thermodynamic Analysis of a Novel Combined Power and Cooling Cycle Driven by the Exhaust Heat Form a Diesel Engine

2013-04-08
2013-01-0858
A novel combined power and cooling cycle based on the Organic Rankine Cycle (ORC) and the Compression Refrigeration Cycle (CRC) is proposed. The cycle can be driven by the exhaust heat from a diesel engine. In this combined cycle, ORC will translate the exhaust heat into power, and drive the compressor of CRC. The prime advantage of the combined cycle is that both the ORC and CRC are trans-critical cycles, and using CO₂ as working fluid. Natural, cheap, environmentally friendly, nontoxic and good heat transfer properties are some advantages of CO₂ as working fluid. In this paper, besides the basic combined cycle (ORC-CRC), another three novel cycles: ORC-CRC with an expander (ORC-CRCE), ORC with an internal heat exchanger as heat accumulator combined with CRC (ORCI-CRC), ORCI-CRCE, are analyzed and compared.
Journal Article

The Performance Characteristics of an Production Oriented Air Hybrid Powertrain

2010-04-12
2010-01-0821
In a previous paper [ 1 ], the authors have proposed a cost effective air hybrid concept based on a proprietary intake system and cam profile switching (CPS) system [ 2 ]. It was shown through engine simulations that the pneumatic hybrid operation could be achieved with about 15% regenerative efficiency. The proposed air hybrid operation can be achieved with proven technologies and engine components and hence it represents a cost-effective, reliable and quick deployable solution for low carbon vehicles. In this work, a four-cylinder 2 litre diesel engine has been modelled to operate on refined air hybrid engine configurations and the braking and motoring performance of each configuration have been studied. Both air hybrid systems can be constructed with production technologies and incur minimum changes to the existing engine design.
Technical Paper

The Optimum Design for Frictional Surface of Piston Ring of Engines

1999-05-03
1999-01-1526
Based on the principle of conjugate curve surface and the theory of hydrodynamic lubrication, the similar spherical spiral surface, which has the best lubrication effect, was obtained in the paper. Experiment show, this kind of frictional surface is lower 15% at power loss, and it is higher 13% at service life than the traditional frictional surface of piston ring, (such as barrel, stepped, cuneiform, rectangle and so on).
Technical Paper

The Optimization of Intake Port using Genetic Algorithm and Artificial Neural Network for Gasoline Engines

2015-04-14
2015-01-1353
The flow performance of intake port significantly affects engine output power, fuel economy, and exhaust emissions in gasoline engines. Thus, optimal intake port geometry is desired in gasoline engines. To optimize the flow performance of intake port, a new optimization method combining genetic algorithm (GA) and artificial neural network (ANN) was proposed. First, an automatic system for generating the geometry of the tangential intake port was constructed to create various port geometries through inputting the 18 pre-defined structural parameters. Then, the effects of four critical structural parameters were investigated through numerical simulation. On the basis of the computational results, an ANN was used to model the flow performance of the intake port, and a genetic algorithm was simultaneously employed to optimize the flow performance by optimizing the four important structural parameters. Finally, the optimization results were verified through numerical simulation.
Technical Paper

The Modeling and Design of a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2015-09-01
2015-01-1970
Engine downsizing of the spark ignition gasoline engine is recognized as one of the most effective approaches to improve the fuel economy of a passenger car. However, further engine downsizing beyond 50% in a 4-stroke gasoline engine is limited by the occurrence of abnormal combustion events as well as much greater thermal and mechanical loads. In order to achieve aggressive engine downsizing, a boosted uniflow scavenged direct injection gasoline (BUSDIG) engine concept has been proposed and researched by means of CFD simulation and demonstration in a single cylinder engine. In this paper, the intake port design on the in-cylinder flow field and gas exchange characteristics of the uniflow 2-stroke cycle was investigated by computational fluid dynamics (CFD). In particular, the port orientation on the in-cylinder swirl, the trapping efficiency, charging efficiency and scavenging efficiency was analyzed in details.
Technical Paper

The Measurement and Analysis of Swirl in Steady Flow

1992-09-01
921642
The influence of swirl on combustion in diesel and spark ignition engines is reviewed briefly, and this leads to a resumé of the swirl measuring techniques. The numerous ways of analysing swirl data are summarised and the relations between the different swirl parameters are presented. Experimental results are presented from a diesel engine in which the flow has been measured by a hot wire anemometer, a paddle wheel and a swirl torquemeter. The performance of the different measurement techniques is compared. Further results are presented (from a spark ignition engine) which illustrate the influence of the inlet port, manifold and entry conditions on the swirl measurements. Integration techniques are reviewed for producing a single swirl parameter to characterise the combined performance of the inlet port, valve and camshaft. Finally, the difficulty in standardising measurements of barrel swirl are discussed.
Technical Paper

The Influence of Intake Port and Pent-Roof Structures on Reversed Tumble Generation of a Poppet-Valved Two-Stroke Gasoline Engine

2014-04-01
2014-01-1130
In order to minimize short-circuiting of the intake charge in the poppet-valved 2-stroke engine, measures are taken to generate reversed tumble in the cylinder. In this study, five different types of intake ports and three types of pent-roof geometries were designed and analysed of their ability to generate and maintain reversed tumble flows by means of CFD simulation for their intake processes on a steady flow rig. Their flow characteristics were then assessed and compared to that of the vertical top-entry ports. Results show that the side-entry port designs can achieve comparatively high tumble intensity. The addition of flow deflectors inside the side-entry ports does not have much effect on the reversed tumble ratio. The top-entry ports have the highest flow coefficient among all the intake ports examined as well as producing strong reversed tumble. It is also found that the pent-roof at a wider angle helps to strengthen the tumble intensity due to increased air flow rate.
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Journal Article

The Effects of Charge Homogeneity and Repeatability on Particulates Using the PLIF Technique in an Optical DISI Engine

2014-04-01
2014-01-1207
The work was concerned with visualisation of the charge homogeneity and cyclic variations within the planar fuel field near the spark plug in an optical spark ignition engine fitted with an outwardly opening central direct fuel injector. Specifically, the project examined the effects of fuel type and injection settings, with the overall view to understanding some of the key mechanisms previously identified as leading to particulate formation in such engines. The three fuels studied included a baseline iso-octane, which was directly compared to two gasoline fuels containing 10% and 85% volume of ethanol respectively. The engine was a bespoke single cylinder with Bowditch style optical access through a flat piston crown. Charge stratification was studied over a wide spectrum of injection timings using the Planar Laser Induced Fluorescence (PLIF) technique, with additional variation in charge temperature due to injection also estimated when viable using a two-line PLIF approach.
Technical Paper

The Effect on Engine Performance and NO Emissions of a Two-Stage Expansion Cycle in a Spark Ignition Engine

1997-10-01
972991
This paper presents the development of an engine simulation program for SI engines and its application to a two-stage expansion cycle. The two-stage expansion analysis is performed using the engine simulation, where a sudden expansion much faster than the normal expansion takes place during the expansion stroke. The changes in NO emissions and knock tolerance of the resulting new engine cycle are investigated for the same compression ratio. The changes in NO emissions and specific fuel consumption through increasing the compression ratio in order to return to the same amount of work done within the cycle are also studied.
Technical Paper

The Effect of Exhaust Gas Recirculation on Soot Formation in a High-Speed Direct-injection Diesel Engine

1996-02-01
960841
A number of tests were conducted on a 2.5 litre, high-speed, direct-injection diesel engine running at various loads and speeds. The aim of the tests was to gain understanding which would lead to more effective use of exhaust gas recirculation (EGR) for controlling exhaust NOx whilst minimising the penalties of increased smoke emission and fuel consumption. In addition to exhaust emission measurements, in-cylinder sampling of combustion gases was carried out using a fast-acting, snatch-sampling valve. The results showed that the effectiveness of EGR was enhanced considerably by cooling the EGR. In addition to more effective NOx control, this measure also improved volumetric efficiency which assisted in the control of smoke emission and fuel consumption. This second of two papers on the use of EGR in diesel engines deals with the effects of EGR on soot emission and on the engine fuel economy.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: Effect of Reducing Inlet Charge Oxygen

1996-05-01
961165
This is a first of a series of papers describing how the replacement of some of the inlet air with EGR modifies the diesel combustion process and thereby affects the exhaust emissions. This paper deals with only the reduction of oxygen in the inlet charge to the engine (dilution effect). The oxygen in the inlet charge to a direct injection diesel engine was progressively replaced by inert gases, whilst the engine speed, fuelling rate, injection timing, total mass and the specific heat capacity of the inlet charge were kept constant. The use of inert gases for oxygen replacement, rather than carbon dioxide (CO2) or water vapour normally found in EGR, ensured that the effects on combustion of dissociation of these species were excluded. In addition, the effects of oxygen replacement on ignition delay were isolated and quantified.
Technical Paper

The Detection and Quantification of Knock in Spark Ignition Engines

1993-10-01
932759
A brief review is included of previous work aimed at quantifying the knock intensity from cylinder pressure measurements. This is used to identify some of the methods used in the current study. Digital signal processing techniques are also discussed, since their application to non-repetitive truncated signals can lead to results that are dependent on the techniques used. These problems are illustrated with some examples of windowing, and non-linear phase shift filters. A good correlation is demonstrated between knock severity indices calculated with energy methods in the time domain and the frequency domain. It is argued that it is easier to implement such knock indices in the lime domain. Use has also been made of mass fraction burn calculations in conjunction with data for the onset of knock, for data recorded simultaneously by two different pressure transducers.
Technical Paper

The Application of Controlled Auto-Ignition Gasoline Engines -The Challenges and Solutions

2019-04-02
2019-01-0949
Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to simultaneously reduce the fuel consumption and nitrogen oxides emissions of gasoline engines. However, narrow operating region in loads and speeds is one of the challenges for the commercial application of CAI combustion to gasoline engines. Therefore, the extension of loads and speeds is an important prerequisite for the commercial application of CAI combustion. The effect of intake charge boosting, charge stratification and spark-assisted ignition on the operating range in CAI mode was reviewed. Stratified flame ignited (SFI) hybrid combustion is one form to achieve CAI combustion under the conditions of highly diluted mixture caused by the flame in the stratified mixture with the help of spark plug.
Technical Paper

The Application and Optimization of EGR-LNT Synergetic Control System on Lean-burn Gasoline Engine

2015-04-14
2015-01-1036
Ensuring lower emissions and better economy (fuel economy and after-treatment economy) simultaneously is the pursuit of future engines. An EGR-LNT synergetic control system was applied to a modified lean-burn CA3GA2 gasoline engine. Results showed that the synergetic control system can achieve a better NOx reduction than sole EGR and sole LNT within a proper range of upstream EGR rate and without the penalty in fuel consumption. It also has the potential to save costly noble metals in LNT, but excessive or deficient upstream EGR would make the synergetic control system inefficiency. In order to guarantee the objectivity of the effect of EGR-LNT synergetic control system on NOx reduction, another modified lean-burn CA4GA5 gasoline engine was additionally tested.
X