Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Uniformity Identification and Sensitivity Analysis of Water Content of Each PEM Fuel Cell Based on New Online High Frequency Resistance Measurement Technique

2024-04-09
2024-01-2189
Water content estimation is a key problem for studying the PEM fuel cell. When several hundred fuel cells are connected in serial and their active surface area is enlarged for sufficient power, the difference between cells becomes significant with respect to voltage and water content. The voltage of each cell is measurable by the cell voltage monitor (CVM) while it is difficult to estimate water content of the individual. Resistance of the polymer electrolyte membrane is monotonically related to its water content, so that the new online high frequency resistance (HFR) measurement technique is investigated to identify the uniformity of water content between cells and analyze its sensitivity to operating conditions in this paper. Firstly, the accuracy of the proposed technique is experimentally validated to be comparable to that of a commercialized electrochemical impedance spectroscopy (EIS) measurement equipment.
Technical Paper

Topology Optimization of Metal and Carbon Fiber Reinforced Plastic (CFRP) Structures under Loading Uncertainties

2019-04-02
2019-01-0709
Carbon fiber reinforced plastic (CFRP) composite materials have gained particular interests due to their high specific modulus, high strength, lightweight and perfect corrosion resistance. However, in reality, CFRP composite materials cannot be used alone in some critical places such as positions of joints with hinges, locks. Therefore, metal reinforcements are usually necessary in local positions to prevent structure damage. Besides, if uncertainties present, obtained optimal structures may experience in failures as the optimization usually pushes solutions to the boundaries of constraints and has no room for tolerance and uncertainties, so robust optimization should be considered to accommodate the uncertainties in practice. This paper proposes a mixed topology method to optimize metal and carbon fiber reinforced plastic composite materials simultaneously under nondeterministic load with random magnitude and direction.
Technical Paper

The Social Economical Benefit Estimation by HEVs Application-Shanghai Case Study

2008-06-23
2008-01-1565
In this paper, a case study of Shanghai HEVs application and its effects on the social and environmental benefits are presented based on the multi views on the different aspects, such as, not only for the fuel consumption saving, but also emissions reduction and health effect, agriculture loss and cleaning cost. The results show that the potential benefits for the society from HEVs application are markedly with the increase of the ratio of HEV in the population of vehicle. Based on this, the policy to promote the HEV purchased by consumers is very important at the beginning of HEV into market.
Technical Paper

Micro Deformation Measurement Using Temporal Phase-Shifting and Spatial-Carrier Digital Speckle Pattern Interferometry

2016-04-05
2016-01-0415
Temporal phase-shifting and spatial-carrier techniques are the two dominant phase extraction methods used in digital speckle pattern interferometry (DSPI). Temporal phase-shifting technique enjoys the advantages of precise phase extraction and capability of high-quality phase map formation, but suffers from the limitation in its use in dynamic measurement due to the time cost for carrying out the phase shift. To meet the rising demand of dynamic measurement of deformations in modern industry, spatial-carrier technique is developed to extract the phase information from a single speckle interferogram, yielding less time cost during a test. In this paper, both temporal phase-shifting and spatial-carrier techniques are investigated in theory as well as experiment. The experiment results from measuring a same deformation behavior using both techniques are used to compare the performances of the two phase extraction techniques.
Journal Article

Investigation on the Impact of High-Temperature Calendar and Cyclic Aging on Battery Overcharge Performance

2022-03-29
2022-01-0698
With the degradation of lithium-ion batteries, the battery safety performance changes, which further influences the safe working window. In this paper, the pouch ternary lithium-ion battery whose rated capacity is 4.2 Ah is used as the research object to investigate the impact of the high-temperature calendar and cyclic aging on tolerance performance. The overcharge-to-thermal-runaway test is performed on the fresh cell and aged cell (90% SOH). The inflection point of voltage for aged cells appears earlier than that of the fresh cell, while the voltage corresponding to the inflection point is the same for them, which means that the voltage at which lithium plating occurs is the same. However, the voltage plateau and the crest voltage before thermal runaway of aged cell are significantly higher than that of the fresh cell. Besides, ohmic heat, reversible heat, and side reaction heat make contribution to the thermal runaway triggering.
Journal Article

Investigation on Dynamic Recovery Behavior of Boron Steel 22MnB5 under Austenite State at Elevated Temperatures

2011-04-12
2011-01-1057
Hot forming process of ultrahigh strength boron steel 22MnB5 is widely applied in vehicle industry. It is one of the most effective approaches for vehicle light weighting. Dynamic recovery is the major softening mechanism of the boron steel under austenite state at elevated temperatures. Deformation mechanism of the boron steel can be revealed by investigation on the behavior of dynamic recovery, which could also improve the accuracy of forming simulations for hot stamping. Uniaxial tensile experiments of the boron steel are carried out on the thermo-mechanical simulator Gleeble3800 at elevated temperatures. The true stress-strain curves and the relations between the work hardening rate and flow stress are obtained in different deformation conditions. The work hardening rate decreases linearly with increasing the flow stress.
Technical Paper

Investigation of Factors Controlling the Attainable Equivalent Plastic Strain in the Gauge Region of Cruciform Specimens

2018-04-03
2018-01-0809
The maximum equivalent plastic strain (EPSmax), which can be achieved in the gauge region of a cruciform specimen during in-plane biaxial tensile tests, is limited due to early fracture on the cruciform specimen arm. In this paper, a theoretical model was proposed to determine the factors related to the EPSmax of a cruciform specimen following ISO 16842: 2014. Biaxial tensile tests were carried out to verify the theoretical analyses. Results show that the material strength coefficient (k) has no effect on the EPSmax, and EPSmax increases with the increase of the material hardening exponent (n) and the cross-sectional-area ratio (c) of the arm region to the gauge region. It is found that the applied load ratio (α) has an effect on EPSmax, which decreases as the load ratio increases from 0:1 (i.e. uniaxial tension) to 1:2 (i.e. plane strain state) and then increases as the load ratio increases to 1:1 (i.e. balanced biaxial tension).
Technical Paper

In-Vehicle Driving Posture Reconstruction from 3D Scanning Data Using a 3D Digital Human Modeling Tool

2016-04-05
2016-01-1357
Driving posture study is essential for the evaluation of the occupant packaging. This paper presents a method of reconstructing driver’s postures in a real vehicle using a 3D laser scanner and Human Builder (HB), the digital human modeling tool under CATIA. The scanning data was at first converted into the format readable by CATIA, and then a personalized HB manikin was generated mainly using stature, sitting height and weight. Its pelvis position and joint angles were manually adjusted so as to match the manikin with the scan envelop. If needed, a fine adjustment of some anthropometric dimensions was also preceded. Finally the personalized manikin was put in the vehicle coordinate system, and joint angels and joint positions were extracted for further analysis.
Journal Article

Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes

2016-04-05
2016-01-0363
The work-hardening response of TRIP780 steel subjected to strain-path changes was investigated using two-stage tension experiments. Large specimens were prestrained and then sub-sized samples were subjected to tension along various directions. The influence of strain-path changes on flow stress and work hardening performance was discussed in detail. The specific plastic work was calculated to compare the kinematic hardening behaviour after strain-path changes. The results showed that transient hardening was observed for TRIP780 sheets subjected to orthogonal strain-path change. The strain-hardening exponent (n-value) was influenced by prestraining levels and the strain path. The n-value exhibited a greater decrease under an orthogonal strain-path change. Prestraining can delay the onset of high work hardenability of TRIP steels. It is meaningful for the safety design of vehicles.
Technical Paper

A Trust Establishment Mechanism of VANETs based on Fuzzy Analytical Hierarchy Process (FAHP)

2022-03-29
2022-01-0142
As the connectivity of vehicles increases rapidly, more vehicles have the capability to communicate with each other. Because Vehicular Ad-hoc NETworks (VANETs) have the characteristics of solid mobility and decentralization, traditional security strategies such as authentication, firewall, and access control are difficult to play an influential role. As a soft security method, trust management can ensure the security attributes of VANETs. However, the rapid growth of newly encountered nodes of the trust management system also increases the requirements for trust establishing mechanisms. Without a proper trust establishment mechanism, the trust value of the newly encountered nodes will deviate significantly from its actual performance, and the trust management system will suffer from newcomer attacks.
Technical Paper

A New U-Net Speech Enhancement Framework Based on Correlation Characteristics of Speech

2024-04-09
2024-01-2015
As a key component of in-vehicle intelligent voice technology, speech enhancement can extract clean speech signals contaminated by environmental noise to improve the perceptual quality and intelligibility of speech. It has extensive applications in the field of intelligent car cabins. Although some end-to-end speech enhancement methods based on time domain have been proposed, there is often limited consideration given to designing model architectures based on the characteristics of the speech signal. In this paper, we propose a new U-Net based speech enhancement framework that utilizes the temporal correlation of speech signals to reconstruct higher-quality and more intelligible clean speech.
Technical Paper

A Development And Test Environment for Automotive LIN Network

2008-06-23
2008-01-1519
“LIN-BOX” is designed as a development tool for simulation, implementation and test of the automotive LIN (Local Interconnect Network) control devices or entire network. The tool can be used to simulate master and/or slaves around LIN system. The configurable signal processing makes it possible to simulate and test the communication behavior. LIN-BOX monitors the bus traffic in the vehicle. The data on LIN bus can not only be shown on various windows but also written into log files. LIN-BOX has been used by several cases for debugging and validation, the result shows that it is a powerful tool for LIN cluster design, simulation and test.
Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
X