Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Coordinated Longitudinal and Lateral Motions Control of Automated Vehicles Based on Multi-Agent Deep Reinforcement Learning for On-Ramp Merging

2024-04-09
2024-01-2560
The on-ramp merging driving scenario is challenging for achieving the highest-level autonomous driving. Current research using reinforcement learning methods to address the on-ramp merging problem of automated vehicles (AVs) is mainly designed for a single AV, treating other vehicles as part of the environment. This paper proposes a control framework for cooperative on-ramp merging of multiple AVs based on multi-agent deep reinforcement learning (MADRL). This framework facilitates AVs on the ramp and adjacent mainline to learn a coordinate control policy for their longitudinal and lateral motions based on the environment observations. Unlike the hierarchical architecture, this paper integrates decision and control into a unified optimal control problem to solve an on-ramp merging strategy through MADRL.
Technical Paper

Cooperative Lane Change Control Based on Null-Space-Behavior for a Dual-Column Intelligent Vehicle Platoon

2023-12-20
2023-01-7064
With the extension of intelligent vehicles from individual intelligence to group intelligence, intelligent vehicle platoons on intercity highways are important for saving transportation costs, improving transportation efficiency and road utilization, ensuring traffic safety, and utilizing local traffic intelligence [1]. However, there are several problems associated with vehicle platoons including complicated vehicle driving conditions in or between platoon columns, a high degree of mutual influence, dynamic optimization of the platoon, and difficulty in the cooperative control of lane change. Aiming at the dual-column intelligent vehicle platoon control (where “dual-column” refers to the vehicle platoon driving mode formed by multiple vehicles traveling in parallel on two adjacent lanes), a multi-agent model as well as a cooperative control method for lane change based on null space behavior (NSB) for unmanned platoon vehicles are established in this paper.
Technical Paper

Combining Dynamic Movement Primitives and Artificial Potential Fields for Lane Change Obstacle Avoidance Trajectory Planning of Autonomous Vehicles

2024-04-09
2024-01-2567
Lane change obstacle avoidance is a common driving scenario for autonomous vehicles. However, existing methods for lane change obstacle avoidance in vehicles decouple path and velocity planning, neglecting the coupling relationship between the path and velocity. Additionally, these methods often do not sufficiently consider the lane change behaviors characteristic of human drivers. In response to these challenges, this paper innovatively applies the Dynamic Movement Primitives (DMPs) algorithm to vehicle trajectory planning and proposes a real-time trajectory planning method that integrates DMPs and Artificial Potential Fields (APFs) algorithm (DMP-Fs) for lane change obstacle avoidance, enabling rapid coordinated planning of both path and velocity. The DMPs algorithm is based on the lane change trajectories of human drivers. Therefore, this paper first collected lane change trajectory samples from on-road vehicle experiments.
X