Refine Your Search

Topic

Search Results

Technical Paper

Vibration and Noise Analysis of Engine Variable Displacement Oil Pump

2017-03-28
2017-01-0446
Oil pump is a critical part of engine lubrication system. The performance and efficiency of oil pump are greatly affected by vibration and noise, which would lead to the pump service life decreasing and pump body easily wearing. Hence the vibration and noise of oil pump is of great importance to study. In this paper, a FEA model of the variable displacement oil pump(VDOP) was established to carry on the modal and noise analysis, while the geometric structure was optimized with test verification. The modal analysis of VDOP was carried out by ABAQUS software, the 3-D unsteady flow field in VDOP was simulated by Pumplinx software, and the sound field was analyzed by ACTRAN acoustic module. Using a special oil pump test bench combined with B&K PULSE vibration and noise test equipment, the NVH and comprehensive performance experiment of the VDOP were carried out here.
Technical Paper

Unsteady Performance Simulation Analysis of a Waste-Gated Turbocharger Turbine under Different Valve Opening Conditions

2017-10-08
2017-01-2417
An electronic waste-gated turbocharger for automotive application can accurately control the boost pressure and effectively reduce turbo-lag. It can improve the transient responsive performance of engine and the acceleration performance of vehicle, which makes vehicle have a better adaptation to the complex traffic environment. A detailed analysis of aerodynamic working principle of electronic wastegate is the foundation for designing the control strategy of electronic wastegate. Putting turbine with electronic wastegate under unsteady condition that simulates the pulse exhaust gas of engine and studying influences of different valve opening on the performance of turbine has the practical value. This paper sets fixed and periodical unsteady conditions and adopts numerical methods to explore the performance of turbine in twin-entry turbocharger and the flow loss of bypass. Steady simulation structure is given for reference.
Technical Paper

Transient Characteristics of Combustion and Emissions during Start up at Higher Cranking Speed in a PFI Engine for HEV Application

2008-10-06
2008-01-2420
The transient characteristics of combustion and emissions during the engine start up at different higher cranking speeds for hybrid electric vehicle (HEV) applications were presented in this paper. Cycle-by-cycle analysis was done for each start up case. Intake air mass during the first several cycles decrease as the engine was cranked at higher speed. Ignition timing is delayed with higher cranking speed, which leads to an increase of exhaust temperature. For various start up cases, similar quantity of fuel is injected at the first cycle, but the ignition timing is significantly delayed to meet the acceleration requirement when cranking speed enhanced. Because of the deterioration of intake charge, the air-fuel mixture is over-enriched in the first several cycles for the cases at higher cranking speed. With cranking speed is increased, the in-cylinder residual gas fraction rises, which leads to poor combustion and decrease of mass fraction of burned fuel.
Technical Paper

Thermodynamic and Chemical Analysis of the Effect of Working Substances on the Argon Power Cycle

2021-04-06
2021-01-0447
The Argon Power Cycle engine is a novel concept for high efficiency and zero emission through the replacement of N2 by Ar. However, the higher in-cylinder temperature and pressure as by-products cause heavier knock. The anti-knock strategies, such as reducing compression ratio and retarding ignition time, offset the efficiency increased by the Argon Power Cycle. Therefore, knock control becomes the most urgent task for the Argon Power Cycle engine development. The anti-knock methods, including fuel replacement, ultra-lean combustion, high dilution combustion, and water injection, were considered. The simulated ignition delay times were used to evaluate the probability of knock. The Otto cycle, combined with chemical equilibrium, was utilized to confirm the effect on the thermal conversion efficiency and each in-cylinder thermodynamic state parameter. The results show that the ignition delay times increase by a factor of two when the Ar dilution ratio increases from 79% to 95%.
Technical Paper

The Study on Fatigue Test of Cab Assembly Based on 4-Channel Road Simulation Bench

2017-03-28
2017-01-0328
The multi-body dynamics simulation and physical iteration were carried out based on the 4-channel road simulation bench, the solution of fatigue test bench which was suitable for cab with frame and suspension was designed. Large load and displacement above the suspension can be loaded on the test bench, and the same weak position of cab exposed on the road test can be assessed well on the fatigue test bench. The effectiveness of the bench test solution was verified though comparative study. And it has important reference for the same type of cab assembly with suspension in the fatigue bench test. According to the durability specifications of cab assembly, a multi-body dynamics model with a satisfactory accuracy was built. And the fixture check and virtual iteration analysis were used to verify the effectiveness of the solution. According to the road load signal analysis and multi-body dynamics analysis results, the test bench with linear guide and spherical joint was built.
Journal Article

The Study on Fatigue Bench Test and Durability Evaluation of a Light Truck Cab

2020-04-14
2020-01-0760
The cab is an essential part of a light truck, and its fatigue durability performance plays an important role in the design and development stage. Accelerated fatigue bench test has been widely applied to product development of carmakers for its low cost and short development cycle. However, in reality, interference exists generally in torsional conditions for the light truck cab when tested on the 4-post vehicle road simulation system. To solve this problem and minimize the lateral force applied on the hydraulic cylinders, the direction and size combinations of displacement release about front and rear suspensions were discussed based on multi-body dynamics simulation and fixture design theory in this paper. Through comparative study, the optimum design and layout scheme of fixtures was determined to conduct the next test procedure. The weak positions of the light truck cab were firstly predicted by utilizing finite element method (FEM) and fatigue analysis theory.
Technical Paper

The Nonlinear Characteristics Impact of Multi-Staged Stiffness Clutch Damper on the Vehicle Creeping

2016-04-05
2016-01-0431
The nonlinear characteristics impact of multi-staged stiffness clutch damper on the vehicle creeping is investigated by using the lumped-parameter modeling method as a certain mass-production passenger sedan is taken as the research subject. Firstly, a quasi-transient engine model of an inline four-cylinder and four-stroke engine, based on measured data of cylinder gas pressure versus crankshaft angle, is derived. Effective output torque is acquired and as the input excitation to the driveline system. Secondly, a 12-DOF (Degree of Freedom) nonlinear and branched powertrain system and vehicle longitudinal dynamics model is established. The differential mechanism characteristics and dynamic tire property based on the LuGre tire model are considered. Then, for a traditional two-staged stiffness clutch damper in consideration of hysteresis characteristics, vehicle powertrain system responses in both the time and frequency domain are obtained.
Technical Paper

The Investigation of Self-Balanced Property and Vibration on the Particular Crankshaft System for an Opposed Piston Engine

2016-06-15
2016-01-1768
For an in-line diesel engine with four cylinder operating in four-stroke mode, the second-order reciprocating inertia forces generally cannot be well balanced with direct approach. The unbalanced second-order inertia forces are the main reason to cause vibration and noise in a diesel engine within low frequency range. The more superior tone quality for modern diesel engine has been expected even for bus application all the time, and there are tougher requirements for truck noise in developed countries, i.e. in Europe and USA. In present research a unique crankshaft system configuration was proposed, which including opposed piston, inner and outer connecting rod, and crankshaft but running in two-stroke mode, to eliminate the second-order inertia force considerably rather than by adding an extra balance shaft mechanism.
Technical Paper

The Emission of a Diesel Engine in Different Coolant Temperature during Cold Start at High Altitude

2019-04-02
2019-01-0730
Emissions of diesel engine have been received much more attention since the Volkswagen Emission Scandal. The Euro VI emission standard has already included cold start emissions in the legislative emission driving cycles which is one of the hardest part of emission control. High altitude performance is also considered in the latest regulations which will be stricter in the future. Heating the coolant is one of the most common method to improve the cold start performance. But researches focus on the emission of a diesel engine in different coolant temperature at high altitude which up to 4500m have not been seen. The present research investigated the effect of coolant temperature on performance and exhaust emissions (gaseous and particulate emissions) during the cold start of a diesel engine. A plateau simulation system controlled the inlet and exhaust pressure to create altitude environments from 0m to 4500m, and the coolant temperature was controlled from 20°C to 60°C.
Technical Paper

The Dynamic Electromagnetic Distribution and Electromagnetic Interference Suppression of Smart Electric Vehicle

2019-04-02
2019-01-1061
Smart electric vehicles need more accurate and more timely information as well as control than traditional vehicles, which depends on great environmental sensors such as millimeter-wave radar. In this way, the electromagnetic compatibility of whole vehicle would confront more serious challenges because of its high frequency range. Thus, this paper studies the electromagnetic distribution and electromagnetic interference suppression of smart electric vehicles with the followings. Firstly, the millimeter wave radar is modeled and optimized. Micro strip patch antenna, with small size, light mass and low cost, is used as array element of antenna. Millimeter wave radar is modeled and simulated step by step from array element to line array to planar matrix. Then the Cross Shape - Uniplanar Compact - Electromagnetic Band Gap (CS-UC-EBG) structure is deployed to optimize its electromagnetic characteristics, based on finite time domain difference model theory.
Technical Paper

Subjective and Objective Evaluation of APU Start-Stop NVH for a Range-Extended Electric Vehicle

2015-03-10
2015-01-0047
In recent years, electric vehicle and hybrid vehicle are either on the market or under intensive research and development (R&D). Since the concept of auxiliary power unit (APU) was brought into the automotive industry, the range-extended electric vehicle (ReEV) has become the favor of the worldwide manufacturers. Normally, the APU starts and stops more frequently in response to the control strategy compared with traditional vehicles, which will affect the ride comfort of passengers. Thus, APU start-stop NVH refinement is an important aspect of ReEV R&D. In this paper, a subjective evaluation on a ReEV was performed to quickly diagnose NVH issues firstly. Based on subjective results, the NVH experiment in a semi-anechoic room was carried out to troubleshoot these issues. The accelerations of the APU mounts, the seat track and the steering wheel as well as interior noise level were acquired and analyzed.
Technical Paper

Study on the Diffusion Law of Electric Vehicle Sharing in Complex Social Network Environment

2023-04-11
2023-01-0889
Electric vehicle sharing (EVS) can alleviate traffic congestion and reduce emissions. However, the poor user experience and lack of word-of-mouth effect lead to the low utilization rate of EVS in China. Based on the demand and pain points of EVS, this paper concentrates on travel mode choice behavior of consumers under social networks and establishes an agent-based model for EVS diffusion. The results show that: (1) Social networks can promote the diffusion of EVS and the number of opinion leaders and the number of fans of opinion leaders play an important role. (2) Consumers are more sensitive to travel costs than non-travel time now, but with the improvement of demand for travel experience, consumers are more concerned with non-travel time. (3) The non-travel time of EVS needs to be reduced to 9, 8 and 7 minutes respectively to retain users when the travel cost increases to 0.7, 0.8 and 0.9 Yuan/minute.
Technical Paper

Study on Improving the Fuel Economy of the Engine on EP Energy-Saving Vehicle

2008-06-23
2008-01-1780
“Soichiro Honda Cup, Honda Econo-Power Competition”, is an annual international energy-saving competition which is hosted by Honda Motor Co., Ltd. Till now it has been held 27 sessions. The aims of the EP project are: promoting the development of environmental protection, making full use of limit earth resources, challenging the fuel consumption limitation of vehicle. Tongji University's students' team has participated in the competition for seven consecutive times. In order to minimize the fuel consumption of the EP energy-saving vehicle, this paper focuses on the technical methods of improving the fuel economy of the engine. Firstly, the optimization of the carburetor. Secondly, for the purpose of improving combustion efficiency, researches on dual spark plug and compression ratio are done.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Technical Paper

Study and Analysis on 3-Dimensional Simulation of the Transient Flow Process of Engine Electronic Control Throttle

2024-04-09
2024-01-2417
Based on the basic structure and operation function of engine throttle, according to the actual structure of a throttle, a 3-dimensional simulation of the transient airflow during the rotation of the throttle from the closed position to the fully open position is realized by using CFD together with the moving mesh technology and the user-defined program. The influence of the throttle movement on the airflow process is studied. The velocity field, pressure field, and flow noise field are analyzed at different angles of throttle rotation. The numerical simulation results show that at the beginning period of the throttle rotation, the vortex appears in the flow field behind the throttle, and the drop of the air pressure between the upstream and downstream position of the throttle is sharp.
Technical Paper

Starting Process Control of a 2-Cylinder PFI Gasoline Engine for Range Extender

2020-04-14
2020-01-0315
With the increasing worldwide concern on environmental pollution, battery electrical vehicles (BEV) have attracted a lot attention. However, it still couldn’t satisfy the market requirements because of the low battery power density, high cost and long charging time. The range-extended electrical vehicle (REEV) got more attention because it could avoid the mileage anxiety of the BEVs with lower cost and potentially higher efficiency. When internal combustion engine (ICE) works as the power source of range extender (RE) for REEV, its NVH, emissions in starting process need to be optimized. In this paper, a 2-cylinder PFI gasoline engine and a permanent magnet synchronous motor (PMSM) are coaxially connected. Meanwhile, batteries and load systems were equipped. The RE co-control system was developed based on Compact RIO (Compact Reconfigurable IO), Labview and motor control unit (MCU).
Technical Paper

Simulation of Intake Manifold Water Injection in a Heavy Duty Natural Gas Engine for Performance and Emissions Enhancement

2018-09-10
2018-01-1653
The present work discusses the effects of intake manifold water injection in a six-cylinder heavy duty natural gas (NG) engine through one-dimensional simulation. The numerical study was carried out based on GT-Power under different engine working conditions. The established simulation model was firstly calibrated in detail through the whole engine speed sweep under full load conditions before the model of intake manifold water injector was involved, and the calibration was based on experimental data. The intake manifold water injection mass was controlled through adjustment of intake water/gas (water/natural gas) ratio, a water/gas ratio swept from 0 to 4 was selected to investigate the effects of intake manifold water injection on engine performance and emissions characteristics. On the other hand, the enhancement potential of intake manifold water injection in heavy duty NG engine under lean and stoichiometric condition was also investigated by the alteration of air-fuel ratio.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

Research on a New Electromagnetic Valve Actuator Based on Voice Coil Motor for Automobile Engines

2017-03-28
2017-01-1070
The electromagnetic valve actuator (EMVA) is considered a technological solution for decoupling between crankshaft and camshaft to improve engine performance, emissions, and fuel efficiency. Conventional EMVA consists of two electromagnets, an armature, and two springs has been proved to have the drawbacks of fixed lift, impact noise, complex control method and large power consumption. This paper proposes a new type of EMVA that uses voice coil motor (VCM) as electromagnetic valve actuator. This new camless valvetrain (VEMA) is characterized by simple structure, flexible controllable and low actuating power. VCM provides an almost flat force versus stroke curve that is very useful for high precision trajectory control to achieve soft landing within simple control algorithm.
X