Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

A Comparative Study of Different Wheel Rotating Simulation Methods in Automotive Aerodynamics

2018-04-03
2018-01-0728
Wheel Aerodynamics is an important part of vehicle aerodynamics. The wheels can notably influence the total aerodynamic drag, lift and ventilation drag of vehicles. In order to simulate the real on-road condition of driving cars, the moving ground and wheel rotation is of major importance in CFD. However, the wheel rotation condition is difficult to be represented exactly, so this is still a critical topic which needs to be worked on. In this paper, a study, which focuses on two types of cars: a fastback sedan and a notchback DrivAer, is conducted. Comparing three different wheel rotating simulation methods: steady Moving wall, MRF and unsteady Sliding Mesh, the effects of different methods for the numerical simulation of vehicle aerodynamics are revealed. Discrepancies of aerodynamic forces between the methods are discussed as well as the flow field, and the simulation results are also compared with published experimental data for validation.
Technical Paper

A Comparative Study of Fuel Cell Prediction Models Based on Relevance Vector Machines with Different Kernel Functions

2021-04-06
2021-01-0728
Fuel cell reactors, as the core components of fuel cell vehicles, have a short life problem that has always limited the development of fuel cell vehicles. The life attenuation curve of fuel cell shows nonlinear characteristics, and there is no model that can accurately predict its effect. This paper is based on the experimental data of the vehicle fuel cell reactor, which is derived from the 600 h durability test run by a 4 kW fuel cell reactor. The relevance vector machine, as a Bayes processing method that supports vector machine, is a data-driven method based on kernel functions. The regression model is established by the relevance vector machine, and the super-parameters are found by genetic algorithm, because the kernel function strongly affects the nonlinearity of the curve, and the decay curve of fuel cell reactor performance is predicted according to four different kernel functions.
Technical Paper

A Comparative Study on Energy Management Strategies for an Automotive Range-Extender Electric Powertrain

2021-12-31
2021-01-7027
In this work, the influences of various real-timely available energy management strategies on vehicle fuel consumption (VFC) and energy flow of a range-extender electric vehicle were studied The strategies include single-point, multi-point, speed-following, and equivalent consumption minimization strategy. In addition, the dynamic programming method which cannot be used in real time, but can provide the optimal solution for a known drive situation was used for comparison. VFCs and energy flow characteristics with different strategies under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) were obtained through computer modeling, and the results were verified experimentally on a range-extender test bench. The experimental results are consistent with the modeled ones in general with a maximum deviation of 4.11%, which verifies the accuracy of the simulation models.
Technical Paper

A Comparative Study on Fuel Economy for CVT and 9-speed AT based Vehicles

2017-10-08
2017-01-2435
It is well-known that, compared with automatic transmissions (ATs), continuously variable transmission (CVT) shows advantages in fuel saving due to its continuous shift manner, since this feature enables the engine to operate in the efficiency-optimized region. However, as the AT gear number increases and the ratio gap narrows, this advantage of CVT is challenged. In this paper, a comparative study on fuel economy for a CVT based vehicle and a 9-speed automatic transmission (AT) based vehicle is proposed. The features of CVT and AT are analyzed and ratio control strategies for both the CVT and 9-speed AT based vehicles are designed from the view point of vehicle fuel economy, respectively. For the 9-speed AT, an optimal gear shift map is constructed. With this gear shift map, the optimal gear is selected as vehicle velocity and driving condition vary.
Journal Article

A Data Driven Fuel Cell Life-Prediction Model for a Fuel Cell Electric City Bus

2021-04-06
2021-01-0739
Life prediction is a major focus for a commercial fuel cell stack, especially applied in fuel cell electric vehicles (FCEV). This paper proposes a data driven fuel cell lifetime prediction model using particle swarm optimized back-propagation neural network (PSO-BPNN). For the prediction model PSO-BP, PSO algorithm is used to determine the optimal hyper parameters of BP neural network. In this paper, total voltage of fuel cell stack is employed to represent the health index of fuel cell. Then the proposed prediction model is validated by the aging data from PEMFC stack in FCEV at the actual road condition. The experimental results indicate that PSO-BP model can predict the voltage degradation of PEMFC stack at actual road condition precisely and has a higher prediction accuracy than BP model.
Journal Article

A Lattice Boltzmann Simulation of Gas Purge in Flow Channel with Real GDL Surface Characteristics for Proton Exchange Membrane Fuel Cell

2019-04-02
2019-01-0389
Gas purge is considered as an essential shutdown process for a PEMFC (Proton Exchange Membrane Fuel Cell), especially in subfreezing temperature. The water flooding phenomenon inside fuel cell flow channel have a marked impact on performance in normal operating condition. In addition, the residual water freezes in the subzero temperature, thus blocking the mass transfer from flow channel to porous media. Therefore, the gas purge course is of primary importance for improvement of performance and durability. The water droplet residing in the flow channel can be purged out due to shearing force of gas. In fact, the flow channel is not completely flat due to surface roughness of gas diffusion layer (GDL), meaning the water droplet may climb over obstacles. Moreover, the water droplet may block the flow channel and then be sheared into films on the surface of GDL.
Technical Paper

A Method of Generating a Composite Dataset for Monitoring of Non-Driving Related Tasks

2024-04-09
2024-01-2640
Recently, several datasets have become available for occupant monitoring algorithm development, including real and synthetic datasets. However, real data acquisition is expensive and labeling is complex, while virtual data may not accurately reflect actual human physiology. To address these issues and obtain high-fidelity data for training intelligent driving monitoring systems, we have constructed a hybrid dataset that combines real driving image data with corresponding virtual data generated from 3D driving scenarios. We have also taken into account individual anthropometric measures and driving postures. Our approach not only greatly enriches the dataset by using virtual data to augment the sample size, but it also saves the need for extensive annotation efforts. Besides, we can enhance the authenticity of the virtual data by applying ergonomics techniques based on RAMSIS, which is crucial in dataset construction.
Technical Paper

A Modeling Study of the Effects of Butanol Addition on Aromatic Species in Premixed Butane Flames

2016-04-05
2016-01-0574
The motivation of the present work was to understand the mechanism by which alcohols produce less aromatic species in their combustion process than an equal amount of hydrocarbon with similar molecular structure does. Due to its numerous advantages over short-chain alcohols, butanol has been considered very promising in soot reduction. Excluding the influence of spray, vaporization and mixing process in engine cases, an adiabatic constant-pressure reactor model was applied to investigate the effect of butanol additives on aromatic species, which are known to be soot precursors, in fuel-rich butane flames. To keep the carbon flux constant, 5% and 10% oxygen by mass of the fuel were added to butane using butanol additive, respectively. Based on the soot reduction effects proposed in literature, effects on temperature, key radical concentrations and the carbon removal from the pathway to aromatic species were considered to identify the major mechanism of reduction in aromatic species.
Technical Paper

A Multi-Axle and Multi-Type Truck Load Identification System for Dynamic Load Identification

2022-03-29
2022-01-0137
Overloading of trucks can easily cause damage to roads, bridges and other transportation facilities, and accelerate the fatigue loss of the vehicles themselves, and accidents are prone to occur under overload conditions. In recent years, various countries have formulated a series of management methods and governance measures for truck overloading. However, the detection method for overload behavior is not efficient and accurate enough. At present, the method of dynamic load identification is not perfect. No matter whether it is the dynamic weight measurement method of reconstructing the road surface or the non-contact dynamic weight measurement method, little attention is paid to the difference of different vehicles. Especially for different vehicles, there should be different load limits, and the current devices are not smart enough.
Journal Article

A Novel Asynchronous UWB Positioning System for Autonomous Trucks in an Automated Container Terminal

2020-04-14
2020-01-1026
As a critical technology for autonomous vehicles, high precise positioning is essential for automated container terminals to implement intelligent dispatching and to improve container transport efficiency. Because of the unstable performance of global positioning system (GPS) in some circumstances, an ultra wide band (UWB) positioning system is developed for autonomous trucks in an automated container terminal. In this paper, an asynchronous structure is adopted in the system, and a three-dimensional (3D) localization method is proposed. Other than a traditional UWB positioning system with a server, in this asynchronous system, positions are calculated in the vehicle. Therefore, propagation delays from the server to vehicles are eliminated, and the real-time performance can be significantly improved. Traditional 3D localization methods based on time difference of arrival (TDOA) are mostly invalid with anchors in the same plane.
Technical Paper

A Novel Battery Impedance Model Considering Internal Temperature Gradient

2018-04-03
2018-01-0436
Battery models are often applied to describe the dynamic characteristics of batteries and can be used to predict the state of the battery. Due to the process of charging and discharging, the battery heat generation will cause the inhomogeneity between inner battery temperature and surface temperature. In this paper, a novel battery impedance model, which takes the impact of the battery internal temperature gradient on battery impedance into account, is proposed to improve the battery model performance. Several experiments are designed and conducted for pouch typed battery to investigate the electrochemical impedance spectroscopy (EIS) characteristics with the artificial temperature gradient (using a heating plate). Experimental results indicate that the battery internal temperature gradient will influence battery EIS regularly.
Technical Paper

A Novel Hybrid Method Based on the Sliding Window Method for the Estimation of the State of Health of the Proton Exchange Membrane Fuel Cell

2023-10-30
2023-01-7001
To study the state of health (SOH) of the proton exchange membrane fuel cell (PEMFC), a novel hybrid method combining the advantages of both the model-based and data-driven methods is proposed. Firstly, the model-based method is proposed based on the voltage degradation model to estimate the variation trend, and three parameters reflecting the performance degradation are selected. Secondly, the data-driven (long short-term memory (LSTM)) method is presented to estimate the variation fluctuation. Moreover, the core step of the hybrid method is returning the results of the LSTM method to the power degradation model as the “observation” and modifying related parameters to improve the estimation accuracy. Finally, the sliding window method is applied to solve the problem of the data increase with the increase of the operating time. The results show that the power estimation is better than the current estimation for the SOH estimation.
Technical Paper

A Novel Speed Control Strategy for Electric Vehicles with Optimal Energy Consumption under Multiple Constraints

2023-04-11
2023-01-0697
Autonomous driving related technologies have become a hot topic in academia and industry. Planning control is one of the core technologies of autonomous driving, which is conducive to vehicles safe and efficient driving. This paper proposes a novel optimal speed control algorithm, which considers the power system's energy consumption, the speed limit on the road, and the safe distance of the vehicle in front. An optimal speed control model of “From battery to wheel” energy consumption is established by constructing a performance index function based on the best-fitting formula of motor power, motor speed and torque. Based on the optimal control principle, the fourth-order ordinary differential equation of the speed control model is established, based on the indirect adjoining approach, the speed control model under the restriction of the road speed limit and safe distance of the preceding vehicle is derived and the analytical expression is obtained.
Technical Paper

A Numerical Study on the Effects of Hot EGR on the Operation of Natural Gas Engine Ignited by Diesel-Butanol Blends

2017-03-28
2017-01-0760
Butanol, which is a renewable biofuel, has been regarded as a promising alternative fuel for internal combustion engines. When blended with diesel and applied to pilot ignited natural gas engines, butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency. However, high blend ratio of butanol is limited by its longer ignition delay caused by the higher latent heat and higher octane number, which restricts the improvement of emission characteristics. In this paper, the potential of increasing butanol blend ratio by adding hot exhaust gas recirculation (EGR) is investigated. 3D CFD model based on a detailed kinetic mechanism was built and validated by experimental results of natural gas engine ignited by diesel/butanol blends. The effects of hot EGR is then revealed by the simulation results of the combustion process, heat release traces and also the emissions under different diesel/butanol blend ratios.
Technical Paper

A Progress Review on Gas Purge for Enhancing Cold Start Performance in PEM Fuel Cell

2018-04-03
2018-01-1312
Cold start capability is one of remaining major challenges in realizing PEMFC (Proton Exchange Membrane Fuel Cell) technology for automotive applications. Gas purge is a common and integral shutdown procedure of a PEMFC automotive in subzero temperature. A dryer membrane electrode assembly (MEA) can store more water before it gets saturated and ice starts to penetrate in the open pores of porous media, thus enhancing cold start capability of a PEMFC. Therefore, gas purge is always performed prior to fuel cell shutdown to minimize residual water in a PEMFC. In the hope of improving effectiveness of purge in a PEMFC vehicle, two important purge parameters are evaluated including purge time and energy requirement. In practice, an optimized gas purge protocol should be developed with minimal parasitic energy, short purge duration and no degradation of components. To conclude, the cold start capability and performance can be consolidated by proper design of gas purge strategies.
Technical Paper

A Progress Review on Heating Methods and Influence Factors of Cold Start for Automotive PEMFC System

2020-04-14
2020-01-0852
Fuel cell vehicles (FCV) have become a promising transportation tool because of their high efficiency, fast response and zero-emission. However, the cold start problem is one of the main obstacles to limit the further commercialization of FCV in cold weather countries. Many efforts have made to improve the cold start ability. This review presents comprehensive heating methods and influence factors of the research progress in solving the Proton Exchange Membrane Fuel Cells (PEMFC) system cold start problems with more than 100 patents, papers and reports, which may do some help for PEMFC system cold start from the point of practical utilization. Firstly, recent achievements and goals will be summarized in the introduction part. Then, regarding the heating strategies for the PEMFC system cold start, different heating solutions are classified into self-heating strategies and auxiliary-heating heating depending on their heating sources providing approach.
Technical Paper

A Reduced Chemical Kinetic Mechanism of Toluene Reference Fuel (toluene/n-heptane) for Diesel Engine Combustion Simulations

2015-04-14
2015-01-0387
In the present study, we developed a reduced chemical reaction mechanism consisted of n-heptane and toluene as surrogate fuel species for diesel engine combustion simulation. The LLNL detailed chemical kinetic mechanism for n-heptane was chosen as the base mechanism. A multi-technique reduction methodology was applied, which included directed relation graph with error propagation and sensitivity analysis (DRGEPSA), non-essential reaction elimination, reaction pathway analysis, sensitivity analysis, and reaction rate adjustment. In a similar fashion, a reduced toluene mechanism was also developed. The reduced n-heptane and toluene mechanisms were then combined to form a diesel surrogate mechanism, which consisted of 158 species and 468 reactions. Extensive validations were conducted for the present mechanism with experimental ignition delay in shock tubes and laminar flame speeds under various pressures, temperatures and equivalence ratios related to engine conditions.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
Technical Paper

A Strategy to Recycle the Braking Energy of HEV with EMB

2014-09-28
2014-01-2542
Recovering the braking energy and reusing it can significantly improve the fuel economy of hybrid electric vehicles (HEVs).The battery ability of recovering electricity limits the improvement of the regenerative braking performance. As one way to solve this problem, the technology of brake-by-wire can be adopted in the HEVs to use the recovery dynamically. The use of high-power electrical equipment, such as electromechanical brake (EMB), is working in the form of brake-by-wire. Due to the nature of EMB, there exists an obvious coupling relationship between the energy flow and brake force distribution. In this paper, a brake force distribution controller is proposed in HEV with EMB, which can maximize braking energy recovery, compared with the conventional distribution control without EMB. Meanwhile, an energy flow strategy working with the distribution controller is designed, which is less limited to the performance of the battery.
X