Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Visualization of Cavitation Inside Nozzle Hole and Injected Liquid Jet

2015-09-01
2015-01-1908
The atomization structure of the fuel spray is known to be affected by flow conditions and cavitation inside the nozzle hole. In this paper, the cavitation phenomena inside the nozzle hole was visualized by using large-scale transparent nozzles, as well as the effect of length-to-width ratio (l/w ratio) of the nozzle hole on cavitation and on the behavior of injection liquid jet. In addition, various flow patterns inside the nozzle hole same as experimental conditions were simulated by the use of Cavitation model incorporated in Star-CCM+, which was compared with experimental results.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Transient Characteristics of Fuel Atomization and Droplet Size Distribution in Diesel Fuel Spray

1983-02-01
830449
The purposes of this study are to clarify the atomization mechanism, the change over time in droplet size distribution, and the change in spray characteristics dependent on back pressure on diesel fuel spray. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking direct microscopic photographs varying the moment of exposure, the back pressure, and the ambient density. The results show that the mechanism of spray atomization is divided into 4 processes, and spatial distribution of breakup droplets and a droplet volume rate are assessed for the whole spray region. Total and local distributions of droplet size are expressed by empirical equations as a function of time elapsed from the moment of injection. It is confirmed that the uniformity of the distribution, Sauter mean diameter of droplets, and droplet production rate change with time. Mean droplet diameter is further described in relation to the pressure drop and the ambient density.
Journal Article

Theoretical Study on Spray Design for Small-Bore Diesel Engine (Second Report)

2017-03-28
2017-01-0704
Generally, soot emissions increase in diesel engines with smaller bore sizes due to larger spray impingement on the cavity wall at a constant specific output power. The objective of this study is to clarify the constraints for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes. The first report applied the geometrical similarity concept to two engines with different bore sizes and similar piston cavity shapes. The smaller engine emitted more smoke because air entrainment decreases due to the narrower spray angle. A new spray design method called spray characteristics similarity was proposed to suppress soot emissions. However, a smaller nozzle diameter and a larger number of nozzle holes are required to maintain the same spray characteristics (such as specific air-entrainment and penetration) when the bore size decreases.
Technical Paper

The Experimental Investigation of the Performance and Emissions Characteristics of Direct Injection Diesel Engine by Bio-Hydro Fined Diesel Oil and Diesel Oil in Different EGR

2020-01-24
2019-32-0595
Bio-hydro fined diesel (BHD) oil is known as a second generation oil made from bio hydro finning process. Biodiesel in the first generation is made from transesterification process and it has several disadvantages such as high density and increased the viscosity that can cause operational problems because can make some deposits in the engine. To overcome this, the second generation process of biodiesel has been modified from the first generation oil. BHD is made from the waste cooking oil by using the hydro finning process without the trans-esterification process. The results of BHD oil has nearly the same with diesel oil. BHD oil has low viscosity and high oxidation stability. Therefore, BHD oil can be used in the diesel engine without making any modifications in the engine. In this study, the comparison of performance and emissions characteristics from BHD oil, waste cooking oil, and diesel oil are investigated.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Study on Multicomponent Fuel Spray with High Injection Pressure

2019-12-19
2019-01-2282
In previous study, the model for flash-boiling spray of multicomponent fuel was constructed and was implemented into KIVA code. This model considered the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets. These numerical results using this model were compared with experimental data which were obtained in the previous study using a constant volume vessel. The spray characteristics from numerical simulation qualitatively showed good agreement with the experimental results. Especially, it was confirmed from both the numerical and experimental data that flash-boiling effectively accelerated the atomization and vaporization of fuel droplets. However, in this previous study, injection pressure was very low (up to 15 MPa), and the spray characteristics of high pressure injection could not be analyzed.
Technical Paper

Study of OBD stageII Misfire Detection System for Small Motorcycles

2020-01-24
2019-32-0511
In recent years, the shift to Fuel Injection (FI) system for motorcycles has been accelerated in response to the enhancement of exhaust emission regulations and the improvement of fuel efficiency for global environmental protection. In addition, On Board Diagnostics (OBD) was introduced to inform users of vehicle abnormalities and failures and prevent from emission failure in the market. OBD stageII requires enlargement of requirements and threshold detection. Seven items are presented in the EU5, Bharat Stage 6 (BS6). The misfire detection in small motorcycles has several problems. First, for the small motorcycle, a single-cylinder engine is the main and its combustion behavior cannot be compared with other cylinders. Consequently, it is difficult to detect misfire. For misfire detection, we focused on the difference in crank angular velocity during combustion stroke between normal combustion and misfire.
Technical Paper

Soot Kinetic Modeling and Empirical Validation on Smokeless Diesel Combustion with Oxygenated Fuels

2003-05-19
2003-01-1789
This paper provides new insights on the mechanism of the smokeless diesel combustion with oxygenated fuels, based on a combination of soot kinetic modeling and optical diagnostics. The chemical effects of fuel compositions, including aromatics - paraffins blend, neat oxygenated fuels and oxygenate additives, on sooting equivalence ratio ‘ϕ’ - temperature ‘T’ dependence were numerically examined using a detailed soot kinetic model. To better understand the physical factors affecting soot formation in oxygenated fuel sprays, the effects of injection pressure and ambient gas temperature on the flame lift-off length and relative soot concentration in oxygenated fuel jets were experimentally investigated. The computational results show that the leaner mixture side of soot formation peninsula on the ϕ - T map, rather than the lower temperature one, should be utilized to suppress the formation of PAHs and ultra-fine particles together with the large reduction in particulate mass.
Technical Paper

Slit Nozzle Injector for A New Concept of Direct Injection SI Gasoline Engine

2000-06-19
2000-01-1902
A direct injection spark ignition (DISI) gasoline engine with a new stratified charge combustion concept has been launched on the Japanese domestic market. This new concept consists of two components. First, a thin fan-shaped spray from a slit nozzle enables wide spray dispersion, moderate spray penetration and a fine atomization. Second, a shell-shaped piston cavity allows better mixture formation, however avoiding distinct charge motions (such as tumble or swirl). Simple intake port geometry increases the full load performance. The combustion concept, at the same time allows stratified charge to be used at higher load and at higher engine speeds and improves the homogeneous charge combustion. A new 3L in-line 6 gasoline engine with this combustion concept showed 20% better fuel economy than a 3L port fuel injection (PFI) engine (λ=1 feed back system) under the Japanese 10-15 mode.
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

2012-10-23
2012-32-0031
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Technical Paper

Simultaneous Measurement of Fuel Droplet Deposition Amount and Oil Film Thickness on Spray Impingement Using Double Laser Induced Fluorescence Method

2017-10-08
2017-01-2371
Diesel Particulate filter (DPF) is installed as after treatment device of exhaust gas in diesel engine, and collects the Particulate Matter (PM). However, as the operation time of engine increases, PM is accumulated in the DPF, resulting in deterioration of PM collection efficiency and increasing in pressure loss. Therefore, Post injection has been attracted attention as DPF regeneration method for burning and removing PM in DPF. However, Post injection causes oil dilution when fuel is injected at the middle to late stage of expansion stroke. Oil dilution are concerned to deteriorate the sliding property of piston and the thermal efficiency. For this reason, it is necessary to elucidate the mechanism and the behavior that spray impinges lubricating oil film. Therefore, in this study, we aimed to construct model of Computational Fluid Dynamics (CFD) that predicts amount of oil dilution which is concern for post injection in diesel engine, with high accuracy.
Technical Paper

Research of the DI Diesel Spray Characteristics at High Temperature and High Pressure Ambient

2007-04-16
2007-01-0665
In order to clarify the diesel fuel spray characteristics inside the cylinder, we developed two novel techniques, which are preparation of same level of temperature and pressure ambient as inside cylinder and quantitative measurement of vapor concentration. The first one utilizes combustion-type constant-volume chamber (inner volume 110cc), which allows 5 MPa and 873K by igniting the pre-mixture (n-pentane and air) with two spark plugs. In the second technique, TMPD vapor concentration is measured by using Laser Induced Exciplex Fluorescence method (LIEF). The concentration is compensated by investigation of the influence of ambient pressure (from 3 to 5 MPa) and temperature (from 550 to 900 K) on TMPD fluorescence intensity. By using two techniques, we investigated the influence of nozzle hole diameter, injection pressure and ambient condition on spray characteristics.
Technical Paper

Reduction of Heavy Duty Diesel Engine Emission and Fuel Economy with Multi-Objective Genetic Algorithm and Phenomenological Model

2004-03-08
2004-01-0531
In this study, a system to perform a parameter search of heavy-duty diesel engines is proposed. Recently, it has become essential to use design methodologies including computer simulations for diesel engines that have small amounts of NOx and SOOT while maintaining reasonable fuel economy. For this purpose, multi-objective optimization techniques should be used. Multi-objective optimization problems have several types of objectives and they should be minimized or maximized at the same time. There is often a trade-off relationship between objects and derivation of the Pareto optimum solutions that express the relationship between the objects is one of the goals in this case. The proposed system consists of a multi-objective genetic algorithm (MOGA) and phenomenological model. MOGA has strong search capability for Pareto optimum solutions. However, MOGA requires a large number of iterations.
Technical Paper

Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emission Using a Single Cylinder Engine and Model Fuels - JCAP Combustion Analysis Working Group Report Part I

2002-10-21
2002-01-2824
Single cylinder engine testing was carried out to clearly understand the test results of multi-cylinder engines reported by the Diesel WG in JCAP (Japan Clean Air Program) (1), (2), (3) and (4). In this tests, engine specifications such as fuel injection pressure, nozzle hole diameter, turbo-charging pressure, EGR rate, and fuel properties such as 1-, 2-, 3-ring aromatics content, n-,i-paraffins content, and T90 were parametrically changed and their influence on the emissions were studied. PM emission generally increased in each engine condition with increased aromatic contents and T90. In particular, multi ring aromatics brought about large increases in PM regardless of the engine conditions. The influence of fuel properties on NOx emission is smaller than the influence on PM emission. Some other fuels that have various side chain structures of 1-ring aromatics, normal paraffins only and various naphthene contents were also investigated.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

2003-05-19
2003-01-1838
Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
Journal Article

Modeling of Auto-Ignition and Combustion Processes for Dual-Component Fuel Spray

2011-09-11
2011-24-0001
Auto-ignition and combustion processes of dual-component fuel spray were numerically studied. A source code of SUPERTRAPP (developed by NIST), which is capable of predicting thermodynamic and transportation properties of pure fluids and fluid mixtures containing up to 20 components, was incorporated into KIVA3V to provide physical fuel properties and vapor-liquid equilibrium calculations. Low temperature oxidation reaction, which is of importance in ignition process of hydrocarbon fuels, as well as negative temperature coefficient behavior was taken into account using the multistep kinetics ignition prediction based on Shell model, while a global single-step mechanism was employed to account for high temperature oxidation reaction. Computational results with the present multi-component fuel model were validated by comparing with experimental data of spray combustion obtained in a constant volume vessel.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

2004-03-08
2004-01-0534
Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Technical Paper

Mixture Preparation and HC Emissions of a 4-Valve Engine with Port Fuel Injection During Cold Starting and Warm-up

1995-02-01
950074
In order to reduce tail-pipe hydrocarbon emissions from SI gasoline engines, rapid catalyst warm-up and improvement of catalyst conversion efficiency are important. There are many reports which have been published by manufacturers and research institutes on this issue. For further reduction of tail-pipe hydrocarbon emissions, it is necessary to reduce engine-out hydrocarbon emissions and to improve after treatment, during the time the catalyst is not activated. This paper quantitatively analyzed the fuel amount of intake port and cylinder wall-wetting, burned fuel and engine-out hydrocarbon emissions, cycle by cycle in firing condition, utilizing a specially designed analytical engine. The effect of mixture preparation and fuel properties for engine-out hydrocarbon emissions, during the cold engine start and warm-up period, were quantitatively clarified.
X