Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Water Jacket Spacer for Improvement of Cylinder Bore Temperature Distribution

2005-04-11
2005-01-1156
For reduction of fuel consumption, a new device “Water Jacket Spacer” which improves temperature distribution of a cylinder block bore wall was developed. In the case of a conventional cylinder block, coolant flow concentrates at the bottom and middle region of the water jacket. While temperature of the upper bore wall is high (due to high-temperature combustion gas) the temperature of the lower bore wall is low, since its only function is to support the piston. When the developed spacer is inserted into a water jacket, the coolant flow concentrates at the upper part of the jacket. As a result, cooling ability to the upper bore wall was improved and temperature of lower bore wall was increased, thereby reducing fuel consumption.
Technical Paper

Variation in Corrosion Resistance of Trivalent Chromate Coating Depending on Type of Zinc Plating Bath

2006-04-03
2006-01-1671
Trivalent chromate coating is replacing the conventional hexavalent chromate coating applied on zinc plating. Zinc plating uses one of three types of plating baths (zincate, cyanide and chloride) according to the characteristics required of subject parts. It has been recognized that trivalent chromate coating provides different corrosion resistance depending on the type of zinc plating bath used. Zinc plating with chromate coating were analyzed to clarify the cause of the corrosion resistance variation with the type of zinc plating bath. It has been revealed that the chromate coating thickness and the condition of top SiO2 layer vary with the type of zinc plating bath, resulting in corrosion resistance variation.
Technical Paper

Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement

2022-03-29
2022-01-0344
This paper presents a design method for continuous fiber composites in three-dimensional space with locally varying orientation distribution and their fabrication method. The design method is formulated based on topology optimization by augmented tensor field design variables. The fabrication method is based on Tailored Fiber Placement technology, whereby a CNC embroidery machine prepares the preform. The fiber path is generated from an optimized orientation distribution field. The preform is formed with vacuum-assisted resin transfer molding. The fabricated prototype weighs 120 g, a 70% weight reduction, achieving 3.5× mass-specific stiffness improvement.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Universal Diesel Engine Simulator (UniDES): 1st Report: Phenomenological Multi-Zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion

2008-04-14
2008-01-0843
We have developed a novel engine cycle simulation program (UniDES: universal diesel engine simulator) to reproduce the diesel combustion process over a wide range of engine operating parameters, such as the amount of injected fuel, the injection timing, and the EGR ratio. The approach described in this paper employs a zoning model, where the in-cylinder region is divided into up to five zones. We also applied a probability density function (PDF) concept to each zone to consider the effect of spatial non-homogeneities, such as local equivalence ratios and temperature, on the combustion characteristics. We linked this program to the commonly used commercial GT-Power® software (UniDES+GT). As a result, we were able to reproduce transient engine behavior very accurately.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Technical Paper

Toyota Newly Developed 2VZ-FE Type Engine

1988-11-01
881775
Newly developed 2VZ-FE engine for CAMRY is a 2.5-liter water cooled and V-type 6-cylinder engine exported from TOYOTA for the first time. This engine has the TOYOTA original 4-valve DOHC system. That is, exhaust camshafts driven by intake camshafts using scissors gears. By its compact configuration with the gear driven camshafts, this V-type 6-cylinder engine is mounted on a front-wheel-drive vehicle which originally had an in-line 4-cylinder engine. By increasing IVZ-FE engine displacement (for domestic), compact pentroof-type combustion chambers, optimum air-fuel ratio and ignition timing by TCCS (TOYOTA Computer Controlled System) and other technologies, a high performance 153HP/5600rpm and a large torque 155ft·lbs/4400rpm have been achieved with a low fuel consumption.
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

2013-04-08
2013-01-0368
The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Technical Paper

Theoretical Study on Spray Design for Small-Bore Diesel Engine

2016-04-05
2016-01-0740
1 Recently, demand for small-bore compact vehicle engines has been increasing from the standpoint of further reducing CO2 emissions. The generalization and formulation of combustion processes, including those related to emissions formation, based on a certain similarity of physical phenomena regardless of engine size, would be extremely beneficial for the unification of development processes for various sizes of engines. The objective of this study is to clarify what constraints are necessary for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes.
Technical Paper

The application of the damage & fracture material model to crashworthiness evaluations for Aluminum cars.

2003-10-27
2003-01-2776
In an evaluation of crashworthiness for the cars made of aluminum alloys, the evaluation considering fracture phenomenon comes to be needed because conventional aluminum alloys have low fracture strain (10-20%). In case of the development of a B-Pillar made by die cast, if crack occurrence, furthermore, separation of a part can be estimated by using CAE in crashworthiness evaluations, we can reduce the number of prototype makings and the cost of development using expensive dies. Therefore, we performed crashworthiness evaluations by CAE using some sort of a damage & fracture material model. It is known as “Orthotropic damage & fracture model”.
Technical Paper

The New Toyota Inline 4 Cylinder 1.8L ESTEC 2ZR-FXE Gasoline Engine for Hybrid Car

2016-04-05
2016-01-0684
The engine in the new fourth generation Prius carries over the same basic structure as the 2ZR-FXE used in the third generation and incorporates various refinements to enhance fuel efficiency. Called the ESTEC 2ZR-FXE, the new engine incorporates various fuel efficient technologies to improve combustion characteristics, knocking, and heat management, while also reducing friction. As a result of this meticulous approach to enhancing fuel efficiency, the new engine is the first gasoline engine in the world to achieve a maximum thermal efficiency of 40%. This paper describes the fuel efficient technologies incorporated into this engine.
Technical Paper

The Establishment of Laboratory Test Method for Gelation of Engine Oil Containing Magnesium Detergents

2001-05-07
2001-01-1986
It has been reported that engine oils containing magnesium detergents gel under special conditions. The authors have previously reported on the mechanism by which magnesium detergents form needle crystals, which is the main cause of the gelation[1]. For this article, the authors conducted tests in actual vehicles using several types of engine oils containing magnesium detergents, including oils for which gelation problems have been reported in the market. The gelation was reproduced, and the test oils were ranked by their propensity to gel. In addition, a laboratory test method was used in which water and CO2 were mixed into engine oil under controlled conditions, then left stored in a bottle for twenty days, after which the kinematic viscosity and the quantity of insolubles of the mixture were measured. The study demonstrated the correlation between the laboratory test method and the actual vehicle tests.
Technical Paper

The Effect of Ethanol Fuel on a Spark Ignition Engine

2006-10-16
2006-01-3380
Since ethanol is a renewable source of energy and it contributes to lower CO2 emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed and has a disadvantage of difficult startability at low temperature. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency, and emissions. The combustion characteristics under cold engine conditions are also examined. Ethanol has high anti-knock quality due to its high octane number, and high latent heat of evaporation, which decreases the compressed gas temperature during the compression stroke. In addition to the effect of latent heat of evaporation, the difference of combustion products compared with gasoline further decreases combustion temperature, thereby reducing cooling heat loss.
Technical Paper

The Development of Toyota Fantasy Print System

1998-09-29
982344
Recently, the demands of vehicle owners have become more diversified. This is particularly true in the paint appearance of the vehicle. Responding to these demands Toyota has developed an ink jet painting system, Toyota Fantasy Print System. This system can illustrate practically any picture which the customer desires. The system utilized a subtractive method of paint mixture which mixes or piles up these four permeable inks. The development of durable ink as well as equipment which can efficiently and effectively apply the ink onto the required contoured surface.
Technical Paper

The Development of Fluid for Small-Sized and Light Weight Viscous Coupling

1998-05-04
981446
For viscous couplings(VCs) as a driving force transmission system of vehicles, requirement of torque characteristics has been getting very stringent. Because the torque characteristics significantly affect four wheel drive vehicles' abilities such as traction performance and driving stability. Furthermore, the recent concerns on high fuel economy, low pollution and low cost require that design of VCs should be increasingly compact, light weighted and excellent in transmitted torque's stability. It is an easy way to increase viscosity of viscous coupling fluids(VCFs) for the compact design of the VC. But it might cause increase in heat load and wear of plates which resulted in degradation of the VCF. The degradation affects VCF's viscosity and impairs stability in torque transmission. Therefore it is indispensable to develop high viscosity VCF which is excellent in long-term viscosity's stability.
Journal Article

Technical Development of Electro Magnetic Compatibility for Plug-in Hybrid Vehicle / Electric Vehicle Using Wireless Power Transfer System

2016-04-05
2016-01-1161
In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
Journal Article

Super High Transfer Efficiency Application for Body Coating

2020-04-14
2020-01-0901
In order to achieve the Toyota Environmental Challenge of 2050 (zero CO2 emissions), we have developed an innovative coating system that achieves more than 95% transfer efficiency. In order to reduce paint loss in the painting process, it is necessary to eliminate overdust and bounce dust. The most important point is how to spray (atomization, particle flight, adhesion) without shaping air. We have developed a “super high transfer efficiency system” that eliminates the need for shaping air. We continue to challenge the development of innovative technologies to view the paint shop as clean and eco-friendly environment.
X