Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Visualization of Micro Structure in a Diesel Spray by Use of Photography with High Spatial Resolution

2008-10-06
2008-01-2465
It is very much necessary for researchers and engineers whose work is the field of combustion in a CI engine to find the information of droplets in a diesel spray. The information is strongly required to construct the model of spray built in the numerical code for its simulation and to be used for the verification of the accuracy of the calculation. This paper describes the photographing system with high spatial resolution, the distribution of droplet size and the vortex scale caused by the droplets motion by means of this system.
Technical Paper

Vibration Analysis of Engine Supported by Hydraulic Mounts

2003-05-05
2003-01-1465
This paper describes a steady vibration of an engine supported by rubber and hydraulic mounts at a relatively low frequency range, assuming an engine is a rigid body. We identify dynamic characteristics of a hydraulic mount with respect to frequency and amplitude. The equation of motion is solved numerically by the Newton-Raphson method, treating the mount characteristics as functions of frequency and amplitude. The excitation test to simulate an engine shake and an idling vibration was performed using a mass block instead of an actual engine. During the engine shake, we observed that the amplitude dependency of hydraulic mounts strongly influences the vibration, while idling, we investigated rolling vibration especially for the case where the torque axis does not pass through the engine's center of gravity. The theoretical predictions agree closely with the experimental results in both engine shake and idling vibration tests.
Journal Article

Verification of ASSTREET Driver-Agent Model by Collaborating with the Driving Simulator

2012-04-16
2012-01-1161
This paper proposes a novel method of verifying comprehensive driver model used for the evaluation of driving safety systems, which is achieved by coupling the traffic simulation and the driving simulator (DS). The method consists of three-step procedure. In the first step, an actual driver operates a DS vehicle in the traffic flow controlled by the traffic simulation. Then in the next step, the actual driver is replaced by a driver model and the surrounding vehicle maneuvers are replayed using the recorded data from the first step. Then, the maneuver by the driver model is compared directly with the actual driver's maneuver along the simulation time steps.
Technical Paper

Vehicle Simulations development to predict Electric field level distribution based on GB/T18387 measurement method

2023-09-29
2023-32-0071
The development of electric vehicles has been progressed, rapidly, to achieve Carbon neutrality by 2050. There have been increasing concerns about Electromagnetic Compatibility (EMC) performance due to increasing power for power trains of vehicles. Because same power train system expands to some vehicles, we have developed numerical simulations in order to predict the vehicle EMC performances. We modeled a vehicle which has inverter noises by numerical simulation to calculate electric fields based on GB/T18387. We simulated the common mode noise which flows through the shielding braid of the high voltage wire harnesses. As a result, it is confirmed a correlation between the electric fields calculated by numerical simulation and the measured one.
Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
Technical Paper

Variation in Corrosion Resistance of Trivalent Chromate Coating Depending on Type of Zinc Plating Bath

2006-04-03
2006-01-1671
Trivalent chromate coating is replacing the conventional hexavalent chromate coating applied on zinc plating. Zinc plating uses one of three types of plating baths (zincate, cyanide and chloride) according to the characteristics required of subject parts. It has been recognized that trivalent chromate coating provides different corrosion resistance depending on the type of zinc plating bath used. Zinc plating with chromate coating were analyzed to clarify the cause of the corrosion resistance variation with the type of zinc plating bath. It has been revealed that the chromate coating thickness and the condition of top SiO2 layer vary with the type of zinc plating bath, resulting in corrosion resistance variation.
Technical Paper

Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement

2022-03-29
2022-01-0344
This paper presents a design method for continuous fiber composites in three-dimensional space with locally varying orientation distribution and their fabrication method. The design method is formulated based on topology optimization by augmented tensor field design variables. The fabrication method is based on Tailored Fiber Placement technology, whereby a CNC embroidery machine prepares the preform. The fiber path is generated from an optimized orientation distribution field. The preform is formed with vacuum-assisted resin transfer molding. The fabricated prototype weighs 120 g, a 70% weight reduction, achieving 3.5× mass-specific stiffness improvement.
Technical Paper

Vaporization Characteristics and Liquid-Phase Penetration for Multi-Component Fuels

2004-03-08
2004-01-0529
The maximum liquid-phase penetration and vaporization behavior was investigated by using simultaneous measurement for mie-scattered light images and shadowgraph ones. The objective of this study was to analyze effect of variant parameters (injection pressure, ambient gas condition and fuel temperature) and fuel properties on vaporization behavior, and to investigate liquid phase penetration for the single- and multi-component fuels. The experiments were conducted in a constant-volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Validation of Control Software Specification Using Design Interests Extraction and Model Checking

2012-04-16
2012-01-0960
Automotive control systems such as powertrain control interact with the open physical environment, and from this nature, expensive prototyping is indispensable to capture a deep understanding of the system requirements and to develop the corresponding control software. Model-based development (MBD) has been promoted to improve productivity by virtual prototyping. Even with MBD, systematic validation of the software specification remains as a major challenge and it still depends heavily on individual engineers' skill and knowledge. Though the introduction of graphical software modeling improved the situation, it requires much time to identify the primal functions, so-called “design interests”, from a large complex model where irrelevant components are mixed with, and to validate it properly.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Journal Article

Typical Velocity Fields and Vortical Structures around a Formula One Car, based on Experimental Investigations using Particle Image Velocimetry

2016-04-05
2016-01-1611
This paper presents typical flow structures around a 60%-scale wind-tunnel model of a Formula One (F1) car, using planar particle image velocimetry (PIV). The customized PIV system is permanently installed in a wind tunnel to help aerodynamicists in the development loop. The PIV results enhance the understanding of the mean velocity field in the two-dimensional plane in some important areas of the car, such as the front-wheel wake and the underfloor flow. These real phenomena obtained in the wind tunnel also help maintain the accuracy of simulations using computational fluid dynamics (CFD) by allowing regular checking of the correlation with the real-world counterpart. This paper first surveys recent literature on unique flow structures around the rotating exposed wheel, mostly that on the isolated wheel, and then gives the background to F1 aerodynamics in the late 2000s.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Technical Paper

Toyota “ECT-i” a New Automatic Transmission with Intelligent Electronic Control System

1990-02-01
900550
TOYOTA has developed a new automatic transmission, called the A341E. This transmission employs a unique engine and transmission integrated intelligent control system named “ECT-i”, and a high performance “Super Flow” Torque Converter. This control system is capable of total control of engine torque and clutch hydraulic pressure during shifting, which has resulted in very smooth shift without changes over the life of the transmission. The “Super Flow” Torque Converter has a modified geometry optimized by the analysis of internal flow by means of computer simulations, attaining the highest efficiecy in the world. With the use of such systems, this new automatic transmission has improved total performance of the vehicle.
Journal Article

Tire and Road Input Modeling for Low-Frequency Road Noise Prediction

2011-05-17
2011-01-1690
This paper presents a modeling method for prediction of low-frequency road noise in a steady-state condition where rotating tires are excited by actual road profile undulation input. The proposed finite element (FE) tire model contains not only additional geometric stiffness related to inflation pressure and axle load but also Coriolis force and centrifugal force effects caused by tire rotation for precise road noise simulation. Road inputs act on the nodes of each rib in the contact patch of the stationary tire model and move along them at the driving velocity. The nodes are enforced to displace in frequency domain based on the measured road profile. Tire model accuracy was confirmed by the spindle forces on the rotating chassis drum up to 100Hz where Coriolis force effect should be considered. Full vehicle simulation results showed good agreement with the vibration measurement of front/rear suspension at two driving velocities.
Technical Paper

Three-Dimensional Shape Measurement With High-Energy X-Ray CT-Scan

2003-03-03
2003-01-1033
Digital engineering has been utilized in product development to improve the quality. The actual object was measured and digitized into the three-dimensional (3-D) data, and the requirement of evaluating and analyzing the CAD data has been increased in these activities. So, we developed the technology that measures the actual object and obtains the 3-D model data for general automotive parts. The features of this new system are high-speed and high-accuracy by using high energy X-ray CT technology and 3-D model data technology. 3-D model data can be obtained for about 5 hours in case of the engine block and the error is 0.1mm or less. We also show the examples of the new automotive parts development using this technology.
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

2013-04-08
2013-01-0368
The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Technical Paper

The application of the damage & fracture material model to crashworthiness evaluations for Aluminum cars.

2003-10-27
2003-01-2776
In an evaluation of crashworthiness for the cars made of aluminum alloys, the evaluation considering fracture phenomenon comes to be needed because conventional aluminum alloys have low fracture strain (10-20%). In case of the development of a B-Pillar made by die cast, if crack occurrence, furthermore, separation of a part can be estimated by using CAE in crashworthiness evaluations, we can reduce the number of prototype makings and the cost of development using expensive dies. Therefore, we performed crashworthiness evaluations by CAE using some sort of a damage & fracture material model. It is known as “Orthotropic damage & fracture model”.
Technical Paper

The Spray Feature of Direct Injection Gasoline Engine with Super High Spatial Resolution Photography

2015-09-01
2015-01-1892
In direct injection spark ignition (DISI), spray characteristics such as the penetration, spatial dispersion, droplet size distribution and the spray wall interaction process are extremely important to control the combustion process through the mixture formation process. Furthermore, the spray basic feature including the spatial and temporal changes is the key issue to reduce the Particulate Matter (PM) & HC emissions. In this study, we reveal both of the macroscopic and microscopic structures of the spray dynamics by Super High Spatial Resolution Photography (SHSRP). Furthermore, it is found that the simulated spray structure such as the penetration and droplet size distribution using Computational Fluid Dynamics (CFD) code is well consistent with the experimental results.
X